Skip to main content

A Complete Visual Hull Representation Using Bounding Edges

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

  • 1476 Accesses

Abstract

In this article, a complete visual hull model is introduced. The proposed model is based on bounding edge representation which is one of the fastest visual hull models. However, the bounding edge model has fundamental drawbacks, which make it inapplicable in some environments. The proposed model produces a refined result which represents a complete triangular mesh surface of the visual hull. Further, comparison of the results by the state-of-the-art methods shows that the proposed model is faster than most of modern approaches, while the results are qualitatively as precise as theirs. Of interest is that proposed model can be computed in parallel distributively over the camera networks, while there is no bandwidth penalty for the network. Consequently, the execution time is decreased by the number of the camera nodes dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cheung, K.M., Baker, S., Kanade, T.: Shape-From-Silhouette Across Time Part II: Applications to Human Modeling and Markerless Motion Tracking. International Journal of Computer Vision 63(3), 225–245 (2005)

    Article  Google Scholar 

  2. Martin, W.N., Aggarwal., J.K.: Volumetric Description of Objects from Multiple Views. IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI) 5(2), 150–158 (1983)

    Article  Google Scholar 

  3. Baumgart, B.G.: A Polyhedron Representation for Computer Vision. In: AFIPS National Computer Conference (1975)

    Google Scholar 

  4. Laurentini, A.: The Visual Hull: A New Tool for Contour-based Image Understanding. In: 7th Scandinavian Conference on Image Analysis, pp. 993–1002 (1991)

    Google Scholar 

  5. Jackins, C.L., Tanimoto, S.L.: Oct-trees and Their Use in Representing Three-dimensional Objects. Computer Graphics and Image Processing 14, 249–270 (1980)

    Article  Google Scholar 

  6. Lazebnik, S., Boyer, E., Ponce, J.: On Computing Exact Visual Hulls of Solids Bounded by Smooth Surfaces. In: CVPR 2001 (December 2001)

    Google Scholar 

  7. Buehler, C., Matusik, W., McMillan, L.: Polyhedral Visual Hulls for Real-time Rendering. In: Eurographics Workshop on Rendering (2001)

    Google Scholar 

  8. Franco, J.-S., Boyer, E.: Exact Polyhedral Visual Hulls. In: Fourteenth British Machine Vision Conference (BMVC), Norwich, UK, pp. 329–338 (September 2003)

    Google Scholar 

  9. Buehler, C., Matusik, W., McMillan, L., Gortler, S.: Creating and Rendering Image-based Visual Hulls. Technical Report. MIT-LCS-TR-780. MIT (1999)

    Google Scholar 

  10. Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., McMillan, L.: Image-based Visual Hulls. In: SIGGRAPH 2000 (July 2000)

    Google Scholar 

  11. Cheung, G.: Visual Hull Construction, Alignment and Refinement for Human Kinematic Modeling, Motion Tracking and Rendering. Doctoral dissertation, Technical Report CMU-RI-TR-03-44, Robotics Institute, Carnegie Mellon University (October 2003)

    Google Scholar 

  12. Cheung, G., Baker, S., Kanade, T.: Visual Hull Alignment and Refinement Across Time: a 3D Reconstruction Algorithm Combining Shape-Frame-Silhouette with Stereo. In: CVPR 2003, Madison, MI (2003)

    Google Scholar 

  13. Lazebnik, S., Furukawa, Y., Ponce, J.: Projective Visual Hulls. International Journal of Computer Vision 74(2), 137–165 (2007)

    Article  Google Scholar 

  14. Cheung, K., Baker, S., Kanade, T.: Shape-From-Silhouette Across Time Part I: Theory and Algorithms. International Journal on Computer Vision 62(3), 221–247 (2005)

    Article  Google Scholar 

  15. 3D Photography Dataset. Beckman Institute and Department of Computer Science, University of Illinois at Urbana-Champaign, http://www-cvr.ai.uiuc.edu/ponce_grp/data/mview/

  16. Middlebury Multi-View Datasets. Middlebury College, Microsoft Research, and the National Science Foundation, http://vision.middlebury.edu/mview/

  17. Intel’s OpenCV library written in C programming language, http://sourceforge.net/projects/opencvlibrary/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raeesi N., M.R., Wu, Q.M.J. (2010). A Complete Visual Hull Representation Using Bounding Edges. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics