Skip to main content

Video Summarization with Visual and Semantic Features

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

Abstract

Video summarization aims to provide a condensed yet informative version for original footages so as to facilitate content comprehension, browsing and delivery, where multi-modal features play an important role in differentiating individual segments of a video. In this paper, we present a method combining both visual and semantic features. Rather than utilize domain specific or heuristic textual features as semantic features, we assign semantic concepts to video segments through automatic video annotation. Therefore, semantic coherence between accompanying text and high-level concepts of video segments is exploited to characterize the importance of video segments. Visual features (e.g. motion and face) which have been widely used in user attention model-based summarization have been integrated with the proposed semantic coherence to obtain the final summarization. Experiments on a half-hour sample video from TRECVID 2006 dataset have been conducted to demonstrate that semantic coherence is very helpful for video summarization when being fused with different visual features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Money, A., Agius, H.: Video summarisation: A conceptual framework and survey of the state of the art. Journal of Visual Communication and Image Representation 19(2), 121–143 (2008)

    Article  Google Scholar 

  2. Li, Y., Zhang, T., Tretter, D.: An overview of video abstraction techniques. Tech. Rep. HP-2001-191, HP Laboratory (2001)

    Google Scholar 

  3. Ma, Y., Zhang, H.: Video snapshot: A bird view of video sequence. In: Proceedings of the 11th International Conference on Multi Media Modeling (MMM), pp. 94–101 (2005)

    Google Scholar 

  4. Xu, M., Li, S.Z., Li, B., Yuan, X.T., Xiang, S.M.: A set theoretical method for video synopsis. In: ACM International Conference on Multimedia Information Retrieval (MIR), pp. 366–370 (2008)

    Google Scholar 

  5. Ekin, A., Tekalp, A., Mehrotra, R.: Automatic soccer video analysis and summarization. IEEE Transactions on Image Processing 12(7), 796–807 (2003)

    Article  Google Scholar 

  6. Luo, B., Tang, X., Liu, J., Zhang, H.: Video caption detection and extraction using temporal information. In: Proceedings of the International Conference on Image Processing (ICIP), vol. 1, pp. 297–300 (2003)

    Google Scholar 

  7. Taskiran, C., Pizlo, Z., Amir, A., Ponceleon, D., Delp, E.: Automated video program summarization using speech transcripts. IEEE Transactions on Multimedia 8(4), 775–791 (2006)

    Article  Google Scholar 

  8. Tsoneva, T., Barbieri, M., Weda, H.: Automated summarization of narrative video on a semantic level. In: Proceedings of the 1st IEEE International Conference on Semantic Computing (ICSC), pp. 169–176 (2007)

    Google Scholar 

  9. Otsuka, I., Nakane, K., Divakaran, A., Hatanaka, K., Ogawa, M.: A highlight scene detection and video summarization system using audio feature for a personal video recorder. IEEE Transactions on Consumer Electronics 51, 112–116 (2005)

    Article  Google Scholar 

  10. Refaey, M., Abd-Almageed, W., Davis, L.: A logic framework for sports video summarization using text-based semantic annotation. In: Proceedings of the 3rd International Workshop on Semantic Media Adaptation and Personalization (SMAP), pp. 69–75 (2008)

    Google Scholar 

  11. Pickering, M., Wong, L., Rüger, S.: ANSES: Summarisation of news video. In: Proceedings of International Conference on Image and Video Retrieval (CIVR), pp. 425–434 (2003)

    Google Scholar 

  12. Evangelopoulos, G., Zlatintsi, A., Skoumas, G., Rapantzikos, K., Potamianos, A., Maragos, P., Avrithis, Y.: Video event detection and summarization using audio, visual and text saliency. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3553–3556 (2009)

    Google Scholar 

  13. Chen, B., Wang, J., Wang, J.: A novel video summarization based on mining the story-structure and semantic relations among concept entities. IEEE Transactions on Multimedia 11(2), 295–312 (2009)

    Article  Google Scholar 

  14. Liang, C., Kuo, J., Chu, W., Wu, J.: Semantic units detection and summarization of baseball videos. In: Proceedings of the 47th Midwest Symposium on Circuits and Systems (MWSCAS), vol. 1, pp. 297–300 (2004)

    Google Scholar 

  15. Tjondronegoro, D., Chen, Y.P., Pham, B.: Classification of self-consumable highlights for soccer video summaries. In: Proceedings of the IEEE International Conference on Multimedia and Expo. (ICME), vol. 1, pp. 579–582 (2004)

    Google Scholar 

  16. Jiang, Y.G., Ngo, C.W., Yang, J.: Towards optimal bag-of-features for object categorization and semantic video retrieval. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval (CIVR), pp. 494–501 (2007)

    Google Scholar 

  17. Ma, Y., Hua, X., Lu, L., Zhang, H.: A generic framework of user attention model and its application in video summarization. IEEE Transactions on Multimedia 7(5), 907–919 (2005)

    Article  Google Scholar 

  18. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR (1), pp. 511–518 (2001)

    Google Scholar 

  19. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet::Similarity - measuring the relatedness of concepts. In: Proceedings of Fifth Annual Meeting of the North American Chapter of the Association for Computational Linguistics (NAACL), pp. 38–41 (2004)

    Google Scholar 

  20. Kleban, J., Sarkar, A., Moxley, E., Mangiat, S., Joshi, S., Kuo, T., Manjunath, B.: Feature fusion and redundancy pruning for rush video summarization. In: Proceedings of the International Workshop on TRECVID Video Summarization, pp. 84–88 (2007)

    Google Scholar 

  21. Liu, Z., Zavesky, E., Gibbon, D., Shahraray, B., Haffner, P.: AT&T research at TRECVID 2007. In: TRECVID 2007 Workshop (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, P., Wang, Z., Zhuo, L., Feng, D. (2010). Video Summarization with Visual and Semantic Features. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics