Skip to main content

Color Spectrum Normalization: Saliency Detection Based on Energy Re-allocation

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

Abstract

Spectrum normalization is a process shared by two saliency detection methods, Spectral Residual (SR) and Phase Fourier Transform (PFT). In this paper, we point out that the essence of spectrum normalization is the re-allocation of energy. By re-allocating normalized energy in particular frequency region to the whole background, the salient objects are effectively highlighted and the energy of the background is weakened. Considering energy distribution in both spectral domain and color channels, we propose a simple and effective visual saliency model based on Energy Re-allocation mechanism (ER). We combine color energy normalization, spectrum normalization and channel energy normalization to attain an energy re-allocation map. Then, we convert the map to the corresponding saliency map using a low-pass filter. Compared with other state-of-the-art models, experiments on both natural images and psychological images indicate that ER can better detect the salient objects with a competitive computational speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hou, X., Zhang, L.: Dynamic Visual Attention: Searching for Coding Length Increments. In: NIPS, vol. 20 (2008)

    Google Scholar 

  2. Wang, Y.S., Tai, C.W., Sorkine, O., Lee, T.Y.: Optimized Scale-and-Stretch for Image Resizing. SIGGRAPH ASIA (2008)

    Google Scholar 

  3. Itti, L., Koch, C., Niebur, E.: A model of Saliency-based Visual Attention for Rapid Scene Analysis. TPAMI 20, 1254–1259 (1998)

    Google Scholar 

  4. Bruce, N., Tsotsos, J.: Saliency Based on Information Maximization. In: NIPS, vol. 18 (2006)

    Google Scholar 

  5. Gao, D., Vasconcelos, N.: Bottom-up Saliency is A Discriminant Process. In: ICCV (2007)

    Google Scholar 

  6. Gao, D., Vasconcelos, N.: An Experimental Comparison of Three Guiding Principles for The Detection Salient Image Locations: Stability, Complexity, and Discrimination. In: CVPR workshops (2005)

    Google Scholar 

  7. Lowe, D.G.: Object Recognition from Local Scale-invariant Features. In: ICCV (1999)

    Google Scholar 

  8. Sebe, N., Lew, M.S.: Comparing Salient Point Detectors. In: ICME (2001)

    Google Scholar 

  9. Kadir, T., Brady, M.I.: Scale, Saliency and Image Description. IJCV 45, 83–105 (2001)

    Article  MATH  Google Scholar 

  10. Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned Salient Region Detection. In: CVPR (2009)

    Google Scholar 

  11. Hou, X., Zhang, L.: Saliency Detection: A Spectral Residual Approach. In: CVPR (2007)

    Google Scholar 

  12. Guo, C., Ma, Q., Zhang, L.: Spatio-temporal Saliency Detection Using Phase Spectrum of Quaternion Fourier Transform. In: CVPR (2008)

    Google Scholar 

  13. Field, D.J.: Relations Between the Statistics of Natural Images and The Response Properties of Cortical Cells. JOSA A 4, 2379–2394 (1987)

    Article  Google Scholar 

  14. Field, D.J.: What is the Goal of Sensory Coding? Source Neural Computation archive 6, 559–601 (1994)

    Google Scholar 

  15. He, D.-C., Wang, L.: Texture Unit, Texture Spectrum, and Texture Analysis. TGRS 28, 509–512 (1990)

    Google Scholar 

  16. Oppenheim, A.V., Lim, J.S.: The Importance of Phase in Signals. Proceedings of the IEEE 69, 529–541 (1981)

    Article  Google Scholar 

  17. Wolfe, J.M.: Asymmetries in Visual Search: An Introduction. Perception and psychophysics 63, 381–389 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kang, Z., Zhang, J. (2010). Color Spectrum Normalization: Saliency Detection Based on Energy Re-allocation. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics