Skip to main content

Abnormal Change Detection of Image Quality Metric Series Using Diffusion Process and Stopping Time Theory

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

Abstract

To evaluate and monitor the Image Quality (IQ) change of a surveillance sequence for video analysis, a diffusion process and stopping time theory based model is presented in this paper because they can describe the uncertainty of an actual stochastic series rationally. First, we calculate the IQ metric for each frame. Then we connect all these discrete data together to form an Image Quality Metric Series (IQMS). After that, a non-parametric estimation technique based diffusion process model is used to fit the fluctuation path of the IQMS. Finally, a stopping time based model is employed to detect the abnormal change. Different to the conventional diffusion process method, the function forms of our model are estimated online and affirmed by an evaluation result of the hypothesis test. Comparing with the traditional time series model, such as the ARMA model, extensive experiments have proved that this method is effective and efficient on detecting the abnormal change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Valera, M., Velastin, S.A.: Intelligent Distributed Surveillance Systems: a Review. IEE Proc. Vision, Image and Sig. Proc. 152, 192–204 (2005)

    Article  Google Scholar 

  2. Narasimhan, S.G., et al.: All the Images of an Outdoor Scene. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 148–162. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. http://www.hazecam.net/

  4. Ke, Y., et al.: The Design of High-level Features for Photo Quality Assessment. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 419–426. IEEE Press, New York (2006)

    Google Scholar 

  5. Wei, X.-H., et al.: An Image Quality Estimation Model Based on HVS. In: IEEE Region 10 Conference, pp. 1–4. IEEE Press, New York (2006)

    Google Scholar 

  6. Kirchgässner, G., Wolters, J.: Introduction to Model Time Series Analysis. Springer, Heidelberg (2007)

    Google Scholar 

  7. Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic, New York (1981)

    Google Scholar 

  8. Jeantheau, T.: A Link between Complete Models with Stochastic Volatility and ARCH Models. Fin. and Stochastics 8, 111–131 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pospisil, L., et al.: Formulas for Stopped Diffusion Processes with Stopping Times Based on Drawdowns and Drawups. Stochastic Proc. and their Application 199, 2563–2578 (2009)

    Article  MathSciNet  Google Scholar 

  10. Gutiérrez, R., et al.: A new Stochastic Gompertz Diffusion Process with Threshold Parameter: Computational Aspects and Applications. App. Mathematics and Computation 183, 738–747 (2006)

    Article  MATH  Google Scholar 

  11. Gutiérrez, R., et al.: The Trend of the Total Stock of the Private Car-petrol in Spain: Stochastic Modeling Using a new Gamma Diffusion Process. App. Energy 86, 18–24 (2009)

    Article  Google Scholar 

  12. Jang, J.: Jump Diffusion Processes and their Application in Insurance and Finance. Ins. Mathematics & Econ. 41, 62–70 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Yacine, A.-S.: Testing Continuous Time Models of the Spot Interest Rate. Rev. Fin. Studies 9, 385–426 (1996)

    Article  Google Scholar 

  14. Hong, Y.-M., Li, H.-T.: Nonparametric Specification Testing for Continuous Time Models with Application to Spot Interest Rates. Rev. Fin. Studies 18, 37–84 (2005)

    Article  MathSciNet  Google Scholar 

  15. Bibby, B.M., et al.: Estimating Functions for Discretely Sampled Diffusion Type Models. Handbook of Financial Econometrics. Elsevier Science Ltd., Amsterdam (2005)

    Google Scholar 

  16. Jiang, G.J., Knight, J.L.: Parametric Versus Nonparametric Estimation of Diffusion Processes – a Monte Carlo Comparison. J. Computational Finance 2, 5–38 (1999)

    Google Scholar 

  17. Rao, P.: Statisticians Inference for Diffusion Type Processes. Wiley, Chichester (1999)

    Google Scholar 

  18. Xiao, H.: Similarity Search and Outlier Detection in Time Series. Ph. D dissertation, Department of Computer and Information Technique, FuDan University (2005)

    Google Scholar 

  19. Poor, H.V., Hadjiliadis, O.: Quickest Detection. Cambridge University, Cambridge (2009)

    MATH  Google Scholar 

  20. Nikolopoulos, C.V., Yannacopoulos, A.N.: A Model for Optimal Stopping in Advertisement. Nonlinear Anal. Real World Applications (2009) (in press)

    Google Scholar 

  21. Xu, K.-L.: Empirical Likelihood-based Inference for Nonparametric Recurrent Diffusions. J. Econometrics 153, 65–82 (2009)

    Article  MathSciNet  Google Scholar 

  22. Lu, P.-F., et al.: A Predictive Coding Using Markov Chain. In: IEEE International Conference on Signal Processing, pp. 1151–1154. IEEE Press, New York (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, H., Cheng, J., Lu, H. (2010). Abnormal Change Detection of Image Quality Metric Series Using Diffusion Process and Stopping Time Theory . In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics