Abstract
Extracting foreground moving objects from video sequences is an important task and also a hot topic in computer vision and image processing. Segmentation results can be used in many object-based video applications such as object-based video coding, content-based video retrieval, intelligent video surveillance, video-based human-computer interaction, etc. In this paper, we propose a framework for real-time segmentation of foreground moving objects from monocular video sequences with static background. Our algorithm can extract foreground layers with cast shadow removal accurately and efficiently. To reduce the computation cost, we use Gaussian Mixture Models to model the scene and obtain initial foreground regions. Then we combine the initial foreground mask with shadow detection to generate a quadrant-map for each region. Based on these quadrant-maps, Markov Random Field model is built on each region and the graph cut algorithm is used to get the optimal binary segmentation. To ensure good temporal consistency, we reuse previous segmentation results to build the current foreground model. Experimental results on various videos demonstrate the efficiency of our proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhang, D., Lu, G.: Segmentation of moving objects in image sequence: a review. Circuits Systems Signal Processing 20(2), 143–183 (2001)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys, 1–45 (2006)
Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine recognition of human activities: A survey. IEEE Trans. CSVT, 1473–1488 (November 2008)
Pritch, Y., Rav-Acha, A., Peleg, S.: Non-chronological video synopsisand indexing. IEEE Trans. Pattern Anal. Machine Intell., 1971–1984 (November 2008)
Yuk, J., et al.: Object-Based Surveillance Video Retrieval System with Real-Time Indexing Methodology. Image Analysis and Recognition, 626–637 (2007)
Rother, C., Kolmogorov, V., Blake, A.: GrabCut –interactive foreground extraction using iterated graph cuts. In: ACM Trans. on Graphics, SIGGRAPH (2004)
Bai, X., Wang, J., Simons, D., Sapiro, G.: Video SnapCut: Robust Video Object Cutout Using Localized Classifiers. In: Proceedings of ACM SIGGRAPH (2009)
Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Probabilistic fusion of stereo with color and contrast for bi-layer segmentation. IEEE TPAMI (2006)
Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings of ICCV (July 2001)
Sun, J., Zhang, W., Tang, X., Shum, H.Y.: Background cut. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006,Part II. LNCS, vol. 3952, pp. 628–641. Springer, Heidelberg (2006)
Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer Segmenta-tion of Live Video. In: Proc. Int’l. Conf. CVPR, pp. 53–60 (2006)
Yin, P., Criminisi, A., Winn, J., Essa, I.: Tree-based Classifiers for Bilayer Video Segmentation. In: Proc. Computer Vision and Pattern Recognition (2007)
Wu, X., Wang, Y., Zheng, X.: Monocular video foreground segmentation system. In: ICPR (2008)
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proc. Computer Vision and Pattern Recognition (1999)
Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance. Proc. of IEEE, 1151–1163 (2002)
Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow segmentation using invariant color features. CV IU 95(2), 238–259 (2004)
Orchard, M.T., Bouman, C.A.: Color quantization of image. IEEE Trans. Signal Process (1991)
Wollborn, M., Mech, R.: Refined procedure for objective evaluation of video object segmentation algorithms. ISO/IEC JTC1/SC29/WG11/ M3448 (March 1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, Z., Zhong, L., Liu, Y. (2010). Efficient Foreground Layer Extraction in Video. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-15702-8_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15701-1
Online ISBN: 978-3-642-15702-8
eBook Packages: Computer ScienceComputer Science (R0)