Skip to main content

Efficient Foreground Layer Extraction in Video

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

Abstract

Extracting foreground moving objects from video sequences is an important task and also a hot topic in computer vision and image processing. Segmentation results can be used in many object-based video applications such as object-based video coding, content-based video retrieval, intelligent video surveillance, video-based human-computer interaction, etc. In this paper, we propose a framework for real-time segmentation of foreground moving objects from monocular video sequences with static background. Our algorithm can extract foreground layers with cast shadow removal accurately and efficiently. To reduce the computation cost, we use Gaussian Mixture Models to model the scene and obtain initial foreground regions. Then we combine the initial foreground mask with shadow detection to generate a quadrant-map for each region. Based on these quadrant-maps, Markov Random Field model is built on each region and the graph cut algorithm is used to get the optimal binary segmentation. To ensure good temporal consistency, we reuse previous segmentation results to build the current foreground model. Experimental results on various videos demonstrate the efficiency of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, D., Lu, G.: Segmentation of moving objects in image sequence: a review. Circuits Systems Signal Processing 20(2), 143–183 (2001)

    Article  MATH  Google Scholar 

  2. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys, 1–45 (2006)

    Google Scholar 

  3. Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine recognition of human activities: A survey. IEEE Trans. CSVT, 1473–1488 (November 2008)

    Google Scholar 

  4. Pritch, Y., Rav-Acha, A., Peleg, S.: Non-chronological video synopsisand indexing. IEEE Trans. Pattern Anal. Machine Intell., 1971–1984 (November 2008)

    Google Scholar 

  5. Yuk, J., et al.: Object-Based Surveillance Video Retrieval System with Real-Time Indexing Methodology. Image Analysis and Recognition, 626–637 (2007)

    Google Scholar 

  6. Rother, C., Kolmogorov, V., Blake, A.: GrabCut –interactive foreground extraction using iterated graph cuts. In: ACM Trans. on Graphics, SIGGRAPH (2004)

    Google Scholar 

  7. Bai, X., Wang, J., Simons, D., Sapiro, G.: Video SnapCut: Robust Video Object Cutout Using Localized Classifiers. In: Proceedings of ACM SIGGRAPH (2009)

    Google Scholar 

  8. Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Probabilistic fusion of stereo with color and contrast for bi-layer segmentation. IEEE TPAMI (2006)

    Google Scholar 

  9. Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings of ICCV (July 2001)

    Google Scholar 

  10. Sun, J., Zhang, W., Tang, X., Shum, H.Y.: Background cut. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006,Part II. LNCS, vol. 3952, pp. 628–641. Springer, Heidelberg (2006)

    Google Scholar 

  11. Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer Segmenta-tion of Live Video. In: Proc. Int’l. Conf. CVPR, pp. 53–60 (2006)

    Google Scholar 

  12. Yin, P., Criminisi, A., Winn, J., Essa, I.: Tree-based Classifiers for Bilayer Video Segmentation. In: Proc. Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  13. Wu, X., Wang, Y., Zheng, X.: Monocular video foreground segmentation system. In: ICPR (2008)

    Google Scholar 

  14. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proc. Computer Vision and Pattern Recognition (1999)

    Google Scholar 

  15. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance. Proc. of IEEE, 1151–1163 (2002)

    Google Scholar 

  16. Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow segmentation using invariant color features. CV IU 95(2), 238–259 (2004)

    Google Scholar 

  17. Orchard, M.T., Bouman, C.A.: Color quantization of image. IEEE Trans. Signal Process (1991)

    Google Scholar 

  18. Wollborn, M., Mech, R.: Refined procedure for objective evaluation of video object segmentation algorithms. ISO/IEC JTC1/SC29/WG11/ M3448 (March 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Z., Zhong, L., Liu, Y. (2010). Efficient Foreground Layer Extraction in Video. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics