Skip to main content

Robust Shape Retrieval through a Novel Statistical Descriptor

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

Abstract

We propose a novel statistical descriptor, Multiple References Histogram Matrix (MRHM), for robust shape retrieval, especially for degraded shape images. For each shape image, MRHM first generates uniform grids and filters noises in each grid by line Hough transformations and curve-fitting transformations. Then MRHM selects a reference for each grid and calculates its local distribution between the reference point and the shape pixels. Finally, all the local distributions are integrated into a global distribution matrix for matching symbols. Experimental results on the MPEG-7 Shape Silhouette Database and the GREC2005 Shape Database show that the proposed method’s recognition rate for degraded shape images is greatly improved over a recent method (SFHM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Huang, X., Gu, J., Wu, Y.: A Constraint Approach to Multifont Chinese Character Recognition. IEEE TPAMI 15, 838–843 (1993)

    Google Scholar 

  2. Ah-Soon, C., Tombre, K.: Architectural Symbol Recognition Using a Network of Constraints. Pattern Recognition Letters 22(2), 231–248 (2001)

    Article  MATH  Google Scholar 

  3. Valveny, E., Matri, E.: A Model for Image Generation and Symbol Recognition through the Deformation of Linear Shapes. Pattern Recognition Letters 24, 2857–2867 (2003)

    Article  Google Scholar 

  4. Su, Y.: Symbol Recognition via Statistical Integration of Pixel-level Constraint Histograms: A New Descriptor. IEEE TPAMI 27(2), 278–281 (2005)

    Google Scholar 

  5. Belongie, S., Malik, J., Puzhicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE TPAMI 24(4), 509–522 (2002)

    Google Scholar 

  6. Ling, H., Jacobs, D.W.: Shape Classification Using Inner-Distance. IEEE TPAMI 29(2), 286–299 (2007)

    Google Scholar 

  7. Zhang, W., Liu, W.Y., Zhang, K.: Symbol Recognition with Kernel Density Matching. IEEE TPAMI 25(12), 2020–2024 (2006)

    Google Scholar 

  8. Zhang, J., Liu, W.Y.: A Pixel-level Statistical Structural Descriptor for Shape Measure and Recognition. In: ICDAR 2009, Spain, pp. 386–390 (2009)

    Google Scholar 

  9. Xu, C., Liu, J., Tang, X.: 2D Shape Matching by Contour Flexibility. IEEE TPAMI 31(1), 180–186 (2009)

    Google Scholar 

  10. http://symbcontestgrec05.loria.fr/sampletest.php

  11. Common, P.: Independent Component Analysis, a New Concept. Signal Processing 36, 287–314 (1994)

    Article  Google Scholar 

  12. Hyvärinen, A., Oja, E.: Independent Component Analysis: Algorithms and Application. Neural Networks 13(4-5), 411–430 (2000)

    Article  Google Scholar 

  13. Song, J.Q., Su, F., et al.: Line net global vectorization: an algorithm and its performance evaluation. In: CVPR 2000, vol. (2), pp. 383–388 (2000)

    Google Scholar 

  14. http://www.imageprocessingplace.com/root_files_V3/image_databases.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, T., Lu, T., Liu, W. (2010). Robust Shape Retrieval through a Novel Statistical Descriptor. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics