Skip to main content

Efficient Temporal Segmentation for Sports Programs with Special Cases

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

Abstract

In sports programs, there are many special cases making shot boundary detection difficult. Targeted for these special cases, not be considered by existing work, this paper presents a shot boundary detection scheme to detect both cuts and gradual transition efficiently. For shot detection, the algorithm is proposed to resist continuous flashes, camera occlusion or image blur that have not been considered before. For gradual transition detection, a unified method is presented to detect various transitions or special effects, together with an algorithm to reduce the false positives caused by fast camera or object motions. The cut detection and gradual transition detection are implemented serially to avoid repeated detection operations. Compared with existing typical works, the proposed scheme obtains higher correct detection rate and fast detection speed, and is more suitable for sports program analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Divakaran, A.: Multimedia Content Analysis: Theory and Applications. Springer, Boston (2009)

    MATH  Google Scholar 

  2. Koprinska, I., Carrato, S.: Temporal video segmentation: A survey. Signal Processing: Image Communication 16(5), 477–500 (2001)

    Article  Google Scholar 

  3. Zhang, H.J., Kankanhalli, A., Smoliar, S.W.: Automatic Partitioning of Full-motion Video. Multimedia Systems 1(1), 10–28 (1993)

    Article  Google Scholar 

  4. Hampapur, A., Jain, R., Weymouth, T.: Digital Video Segmentation. In: Proc. ACM Multimedia 1994, San Francisco, CA, pp. 35–364 (October 1994)

    Google Scholar 

  5. Nam, J., Tewfik, A.H.: Detection of Gradual Transitions in Video Sequences Using B-Spline Interpolation. IEEE Trans. Multimedia 7(4), 667–679 (2005)

    Article  Google Scholar 

  6. Truong, B.T., Dorai, C., Venkatesh, S.: New enhancements to cut, fade, and dissolve detection processes in video segmentation. In: Proc. ACM Multimedia, pp. 219–227 (2000)

    Google Scholar 

  7. Arman, F., Hsu, A., Chiu, M.-Y.: Image Processing on Encoded Video Sequences. Multimedia Systems 1(5), 211–219 (1994)

    Article  Google Scholar 

  8. Joyce, R.A., Liu, B.: Temporal Segmentation of Video Using Frame and Histogram Space. IEEE Trans. Multimedia 8(1), 130–140 (2006)

    Article  Google Scholar 

  9. Zabih, R., Miller, J., Mai, K.: A feature-based algorithm for detecting and classifying production effects. Multimedia Systems 7(2), 119–128 (1999)

    Article  Google Scholar 

  10. Cernekova, Z., Pitas, I., Nikou, C.: Information Theory-Based Shot Cut/Fade Detection and Video Summarization. IEEE Trans. Circuits and Systems for Video Tech. 16(1), 82–91 (2006)

    Article  Google Scholar 

  11. Gao, X., Tang, X.: Unsupervised Video-Shot Segmentation and Model-Free Anchorperson Detection for News Video Story Parsing. IEEE Trans. Circuits and Systems for Video Technology 12(9), 765–776 (2002)

    Article  Google Scholar 

  12. Ngo, C.-W.: A robust dissolve detector by support vector machine. In: Proc. ACM Int. Conf. Multimedia, pp. 283–286 (2003)

    Google Scholar 

  13. Han, B., Hu, Y., Wang, G., Wu, W., Yoshigahara, T.: Enhanced Sports Video Shot Boundary Detection Based on Middle Level Features and a Unified Model. IEEE Transactions on Consumer Electronics 53(3), 1168–1176 (2007)

    Article  Google Scholar 

  14. Matsumoto, K., Naito, M., Hoashi, K., Sugaya, F.: SVM-Based Shot Boundary Detection with a Novel Feature. In: Proc. IEEE Int. Conf. Multimedia and Expo., pp. 1837–1840 (2006)

    Google Scholar 

  15. Feng, H., Fang, W., Liu, S., Fang, Y.: A New General Framework for Shot Boundary Detection Based on SVM. Proc. IEEE ICNN&B 2, 1112–1117 (2005)

    Google Scholar 

  16. Kawai, Y., Sumiyoshi, H., Yagi, N.: Shot boundary detection at TRECVID 2007. In: Proc. of TRECVID Workshop 2007 (2007)

    Google Scholar 

  17. Yuan, J., Wang, H., Xiao, L., Zheng, W., Li, J., Lin, F., Zhang, B.: A Formal Study of Shot Boundary Detection. IEEE Transactions on circuits and systems for video technology 17(2), 168–186 (2007)

    Article  Google Scholar 

  18. Ekin, A., Tekalp, A.M., Mehrotra, R.: Automatic Soccer Video Analysis and Summarization. IEEE Transactions on Image Processing 12(7), 796–807 (2003)

    Article  Google Scholar 

  19. Adjeroh, D., Lee, M.C., Banda, N., Kandaswamy, U.: Adaptive Edge-Oriented Shot Boundary Detection. EURASIP Journal on Image and Video Processing 2009, Article ID 859371, 13 pages (2009), doi:10.1155/2009/859371

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lian, S., Dong, Y., Wang, H. (2010). Efficient Temporal Segmentation for Sports Programs with Special Cases. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics