Skip to main content

A Simple Content-Based Strategy for Estimating the Geographical Location of a Webcam

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

Abstract

This study proposes a strategy for determining the approximate geographical location of a webcam based on a sequence of images taken at regular intervals. For a time-stamped image sequence spanning 24 hours the approximate sunrise and sunset times are determined by classifying images into day and nighttime images based on the image intensity. Based on the sunrise and sunset times both the latitude and longitude of the webcam can be determined. Experimental data demonstrates the effectiveness of the strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahern, S., Naaman, M., Nair, R., Hui-I Yang, J.: World explorer: visualizing aggregate data from unstructured text in geo-referenced collections. In: The proceedings of 7th ACM/IEEE-CS joint conference on Digital libraries, pp. 1–10 (2007)

    Google Scholar 

  2. Alvarez, P.: Using Extended File Information (EXIF) File headers in Digital Evidence Analysis. International Journal of Digital Evidence 2, 3 (2004)

    Google Scholar 

  3. ANSI: ANSI PH2.7-1973 American National Standard Photographic Exposure Guide. American National Standards Institute, New York (1973)

    Google Scholar 

  4. ANSI: ANSI PH2.7-1986. American National Standard for Photography - Photographic Exposure Guide. American National Standards Institute, New York (1986)

    Google Scholar 

  5. Bao, G.-Q., Xiong, S.-S., Zhou, Z.-Y.: Vision-based horizon extraction for micro air vehicle flight control. IEEE Transactions on Instrumentation and Measurement 54(3), 1067–1072 (2005)

    Article  Google Scholar 

  6. Carboni, D., Sanna, S., Zanarini, P.: GeoPix: image retrieval on the geo web, from camera click to mouse click. In: Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, pp. 169–172 (2006)

    Google Scholar 

  7. Cozman, F., Krotkov, E.: Robot localization using a computer vision sextant. In: The Proceedings of IEEE International Conference on Robotics and Automation, pp. 106–111 (1995)

    Google Scholar 

  8. Ettinger, S.M., Nechyba, C.: lfju, P. G.; Towards Flights autonomy: Vision-based horizon detection for micro air vehicles. In: The Proceedings of IEEE International Conference on Robotics and Automation (2002)

    Google Scholar 

  9. GAO: GLOBAL POSITIONING SYSTEM: Significant Challenges in Sustaining and Upgrading Widely Used Capabilities. United States Government Accountability Office (2009)

    Google Scholar 

  10. Jacobs, N., Roman, N., Pless, R.: Toward Fully Automatic Geo-Location and Geo-Orientation of Static Outdoor Cameras. In: The Proceedings of IEEE Workshop on Applications of Computer Vision, pp. 1–6 (2008)

    Google Scholar 

  11. Jacobs, N., Satkin, S., Roman, N., Speyer, R., Pless, R.: Geolocating Static Cameras. In: The Proceedings of IEEE 11th International Conference on Computer Vision (ICCV 2007), pp. 1–6 (2007)

    Google Scholar 

  12. Jang, C.-J., Lee, J.-Y., Lee, J.-W., Cho, H.-G.: Smart Management System for Digital Photographs using Temporal and Spatial Features with EXIF metadata. In: The Proceedings of 2nd International Conference on Digital Information Management, pp. 110–115 (2007)

    Google Scholar 

  13. Jones, L.A.: Sunlight and skylight as determinants of Photographic exposure. I. Luminous density as determined by solar altitude and atmospheric conditions. Journal of the Optical Society of America 38(2), 123–178 (1948)

    Article  Google Scholar 

  14. Jones, L.A.: Sunlight and skylight as determinants of Photographic exposure. II. Scene structure, directional index, photographic efficiency of daylight, safety factors, and evaluation of camera exposure. Journal of the Optical Society of America 39(2), 94–135 (1949)

    Article  Google Scholar 

  15. Jones, L.A., Condit, H.R.: The Brightness Scale of Exterior Scenes and the Computation of Correct Photographic Exposure. Journal of the Optical Society of America 31(11), 651–678 (1941)

    Article  Google Scholar 

  16. Ray, S.F.: Camera Exposure Determination. In: Jacobson, R.E., Ray, S.F., Atteridge, G.G., Axford, N.R. (eds.) The Manual of Photography: Photographic and Digital Imaging. Focal Press (2000)

    Google Scholar 

  17. Romero, N.L., Chornet, V.V.G.C.G., Cobos, J.S., Carot, A.A.S.C., Centellas, F.C., Mendez, M.C.: Recovery of descriptive information in images from digital libraries by means of EXIF metadata. Library Hi Tech. 26(2), 302–315 (2008)

    Article  Google Scholar 

  18. Sandnes, F.E.: Geo-Spatial Tagging of Image Collections using Temporal Camera Usage Dynamics. In: The Proceedings of I-SPAN 2009, pp. 160–165 (2009)

    Google Scholar 

  19. Sandnes, F.E.: Sorting holiday photos without a GPS: What can we expect from contents-based geo-spatial image tagging? In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds.) PCM 2009. LNCS, vol. 5879, pp. 256–267. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Serrano, N., Savakis, A., Luo, A.: A computationally efficient approach to indoor/outdoor scene classification. In: The Proceedings of 16th International Conference on Pattern Recognition, pp. 146–149 (2002)

    Google Scholar 

  21. Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: The Proceedings of IEEE International Workshop on Content-Based Access of Image and Video Database, pp. 42–51 (1998)

    Google Scholar 

  22. Trebi-Ollennu, A., Huntsberger, T., Cheng, Y., Baumgartner, E.T.: Design and analysis of a sun sensor for planetary rover absolute heading detection. IEEE Transactions on Robotics and Automation 17(6), 939–947 (2001)

    Article  Google Scholar 

  23. Zheng, Y.-T., Ming, Z., Yang, S., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.-S., Neven, H.: Tour the world: Building a web-scale landmark recognition engine. In: The Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 1085–1092 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sandnes, F.E. (2010). A Simple Content-Based Strategy for Estimating the Geographical Location of a Webcam. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics