Skip to main content

Non-blind Image Deconvolution with Adaptive Regularization

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

Abstract

Ringing and noise amplification are the most dominant artifacts in image deconvolution. These artifacts can be reduced by introducing image prior into the deconvolution process. A regularization weighting factor can control the strength of regularization. Ringing and noise can be reduced significantly with the strong weighting factor, but details can be lost. We propose a non-blind image deconvolution method with adaptive regularization that can reduce ringing and noise in the smooth region and preserve image details in the textured region simultaneously. For adaptive regularization, we make a reference image that gives proper edge information and helps to restore a latent image. The reference image guides the strength of the weighting factor on the pixel of the blurred image. Experimental results show that ringing and noise are suppressed efficiently, while preserving image details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Ezra, M.R., Nayar, S.K.: Motion Deblurring using Hybrid Imaging. In: Proceedings of Computer Vision and Pattern Recognition, vol. 1, pp. 657–664 (2003)

    Google Scholar 

  2. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing Camera Shake from a Single Photograph. ACM Trans. on Graph. (SIGGRAPH) 25, 787–794 (2006)

    Article  Google Scholar 

  3. Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image Deblurring with Blurred/Noisy Image Pairs. ACM Trans. on Graph. (SIGGRAPH) 26, 1–10 (2007)

    Google Scholar 

  4. Shan, Q., Jia, J.Y., Agarwala, A.: High-quality Motion Deblurring from a Single Image. ACM Trans. on Graph. (SIGGRAPH) 27 (2008)

    Google Scholar 

  5. Krishnan, D., Fergus, R.: Fast Image Deconvolution using Hyper-Laplacian Priors. In: Advances in Neural Information Processing Systems, vol. 22, pp. 1–9 (2009)

    Google Scholar 

  6. Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series. MIT Press, Cambridge (1964)

    Google Scholar 

  7. Lucy, L.: An Iterative Technique for the Rectification of Observed Distributions, vol. 79, pp. 745–754 (1974)

    Google Scholar 

  8. Donatelli, M., Estatico, C., Martinelli, A., Serra-Capizzano, S.: Improved Image Deblurring with Anti-reflective Boundary Conditions and Re-blurring. Inverse Problems 22, 2035–2053 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dey, N., Blanc-Fraud, L., Zimmer, C., Kam, Z., Roux, P., Olivo-Marin, J., Zerubia, J.: Richardson-Lucy Algorithm with Total Variation Regularization for 3D Confocal Microscope Deconvolution. Microscopy Research Technique 69, 260–266 (2006)

    Article  Google Scholar 

  10. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and Depth from a Conventional Camera with a Coded Aperture. ACM Trans. on Graph (SIGGRAPH) 26, 70–77 (2007)

    Article  Google Scholar 

  11. Jia, J.: Single Image Motion Deblurring using Transparency. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  12. Liu, R., Jia, J.: Reducing Boundary Artifacts in Image Deconvolution. In: IEEE International Conference on Image Processing (2008)

    Google Scholar 

  13. Osher, S., Rudin, L.I.: Feature-oriented Image Enhancement using Shock Filters. SIAM Journal on Numerical Analysis 27, 919–940 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, JH., Ho, YS. (2010). Non-blind Image Deconvolution with Adaptive Regularization. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics