Skip to main content

A Multi-layer Scene Model for Video Surveillance Applications

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

  • 1464 Accesses

Abstract

Foreground detection is the most important preprocess for video surveillance applications. However, classifying pixels of video frames into only background and foreground seems insufficient in real situations. In this study, we model the monitoring scene by using a multi-layer framework. The proposed scene model classifies pixels layer by layer into four different states, comprising background, moving foreground, static foreground and shadow. Different scenarios such as shadow elimination, abandoned object detection and object tracking were tested with the proposed scene model. The experimental results demonstrate it is quantified for real video surveillance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cucchiara, R., Grana, C., Piccardi, M., Prati, A., Sirotti, S.: Improving Shadow Suppression in Moving Object Detection with HSV Color Information. In: Proceedings of 2001 IEEE Intelligent Transportation Systems Conference, pp. 334–339 (2001)

    Google Scholar 

  2. Shan, Y., Yang, F., Wang, R.: Color Space Selection for Moving Shadow Elimination. In: Proceedings of 4th International Conference on Image and Graphics, pp. 496–501 (2007)

    Google Scholar 

  3. Nicolas, M.-B., Zaccarin, A.: Learning and Removing Cast Shadows through a Multidistribution Approach. IEEE Transactions on Pattern Analysis and Machine Intelligent 29(7), 1133–1146 (2007)

    Article  Google Scholar 

  4. Stauffer, C., Grimson, W.E.L.: Adaptive Background Mixture Models for Real-time Tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)

    Google Scholar 

  5. Tanaka, T., Shimada, A., Arita, D., Taniguchi, R.: Non-parametric Background and Shadow Modeling for Object Detection. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 159–168. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Herrero-Jaraba, E., Orrite-Urunuela, C., Senar, J.: Detected Motion Classification with a Double-background and a neighborhood-based difference. Pattern Recognition Letters 24, 2079–2092 (2003)

    Article  Google Scholar 

  7. Gallego, J., Pardas, M., Landabaso, J.-L.: Segmentation and Tracking of Static and Moving Objects in Video Surveillance Scenarios. In: Proceedings of IEEE International Conference on Image Processing, pp. 2716–2719 (2008)

    Google Scholar 

  8. Benedek, C., Sziranyi, T.: Study on Color Space Selection for Detecting Cast Shadows in Video Surveillance. International Journal of Imaging Systems and Technology 17, 190–201 (2007)

    Article  Google Scholar 

  9. Izadi, M., Parvaneh, S.: Robust Region-based Background Subtraction and Shadow Removing using Color and Gradient Information. In: Proceedings of International Conference on Pattern Recognition, pp. 1–5 (2008)

    Google Scholar 

  10. Zivkovic, Z., van der Heijden, F.: Recursive Unsupervised Learning of Finite Mixture Models. IEEE Transactions on Pattern Analysis and Machine Intelligent 26(7), 773–780 (2006)

    Google Scholar 

  11. Marcenaro, L., Ferrari, M., Marchesotti, L., Regazzoni, C.S.: Multiple Object Tracking Under Heavy Occlusions by Using Kalman Filters Based on Shape Matching. In: Proceedings of International Conference on Image Processing, vol. 3, pp. 341–344 (2002)

    Google Scholar 

  12. Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting Moving Shadows: Algorithms and Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligent 25(7), 918–923 (2003)

    Article  Google Scholar 

  13. Ninth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS 2006) (2006), http://pets2006.net/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, CH., Wu, RC. (2010). A Multi-layer Scene Model for Video Surveillance Applications. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics