Abstract
Video up-conversion takes significant place in various application areas. One of important application areas is standard-definition (SD) video processing to get high-definition (HD) content for television and broadcast. However, high-quality up-conversion is a challenging task. Most practical implementations use spatial domain processing such as video frame interpolation for video up-scale. Meanwhile, due to sampling limitation the high-frequency component of output HD video cannot be efficiently reconstructed by applying only the spatial domain processing and high-quality up-conversion usually requires temporal domain processing as well. The authors propose practical implementation of such up-conversion technique providing significantly better visual results in comparison to traditional methods of SD to HD up-conversion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borman, S., Stevenson, R.: Super-resolution from image sequences - a review. In: Proc. Midwest Symposium on Circuits and Systems (1998)
Kim, K.I., Franz, M.O., Scheolkopf, B.: Kernel Hebbian Algorithm for Single-Frame Super-Resolution. In: Proc. Midwest Symposium on Circuits and Systems (1998)
Borman, S., Stevenson, R.: Spatial Resolution Enhancement of Low-Resolution Image Sequences - A Comprehensive Review with Directions for Future Research, Department of Electrical Engineering, University of Notre Dame (1998)
Farsiu, S., Dirk Robinson, M., (Student Member), Elad, M., Milanfar, P., (Senior Member): Fast and Robust Multiframe Super Resolution (1998)
Yuan, S., Abe, M., Taguchi, A., Kawamata, M.: High accuracy wadi image interpolation with local gradient features. In: Proc. of 2005 Int. Symposium on Intelligent Signal Proc. and Comm. Systems, pp. 85–88 (2005)
Lukin, A., Kubasov, D.: High-Quality Algorithm for Bayer Pattern Interpolation. Programming and Computer Software 30(6), 347–358 (2004)
Li, X., Orchard, M.: New edge-directed interpolation. IEEE Trans. on Image Processing 10(10), 1521–1527 (2001)
Chughtai, M.A., Khattak, N.: An Edge Preserving Locally Adaptive Anti-aliasing Zooming Algorithm with Diffused Interpolation. In: The 3rd Canadian Conference on Computer and Robot Vision (CRV 2006), p. 49 (2006)
Rodrigues, L., Borges, D.L., Goncalves, L.M.: A Locally Adaptive Edge-Preserving Algorithm for Image Interpolation. In: Proceedings of the 15th Brazilian Symposium on Computer Graphics and Image Processing, pp. 300–305 (2002)
Duchon, C.E.: Lanczos Filtering in One and Two Dimensions. Journal of Applied Meteorology 18(8), 1016–1022 (1979)
Glassner, A.S., Turkowski, K., Gabriel, S.: Filters for Common Resampling Tasks. In: Graphics Gems I, pp. 147–165. Academic Press, London (1990)
Barreto, D., Alvarez, L.D., Abad, J.: Motion Estimation Techniques in Super-Resolution Image Reconstruction. In: A Performance Evaluation. Virtual observatory. Plate content digitalization, archive mining and image sequence processing, Sofia, Bulgary, vol. 1, pp. 254–268 (2006)
Richardson, E.G.: Iain: H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. John Wiley and Sons Ltd, Chichester (2003)
Brown, L.G.: Computing Surveys (CSUR). Columbia Univ., ACM, New York (December 1992)
Aptoula, E., Lefevre, S., Ronse, C.: A hit-or-miss transform for multivariate images Source Pattern Recognition Letters, pp. 760–764. Elsevier Science Inc., New York (June 2009)
Khosravi, M., Schafer, R.W.: Template matching based on a grayscale hit-or-miss transform. Human Interface Technol. Center, ATT Global Inf. Solutions, Atlanta, GA. IEEE Trans. Image Process. (1996)
Perret, B., Lefevre, S., Collet, C.: A robust hit-or-miss transform for template matching applied to very noisy astronomical images. Source, Pattern Recognition 42(11), 2470–2480 (2009)
Khosravi, M., Schafer, R.W.: Template Matching Based on a Grayscale Hit-or-Miss Transform. IEEE Transactions on Image Processing 5(6) (June 1996)
Tekalp, A.M., Ozkan, M.K., Sezan, M.I.: Highresolution image reconstruction from lower-resolution image sequences and space-varying image restoration. In: ICASSP, San Francisco, vol. III, pp. 169–172 (1992)
Chen, T.: Adaptive temporal interpolation using bidirectional motion estimation and compensation. In: IEEE International Conference of Image Processing, pp. 313–316 (2002)
Chan, T.-M., Zhang, J., Pu, J., Huang, H.: Neighbor embedding based super-resolution algorithm through edge detection and feature selection. Pattern Recognition Letters 30(5), 494–502 (2009)
Drettakis, G., Scopigno, R.: Visual-Quality Optimizing Super Resolution. Eurographics 27(3) (2008)
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vashkelis, V., Trukhina, N., Kumar, S. (2010). Practical Implementation of Super-Resolution Approach for SD-to-HD Video Up-Conversion. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-15702-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15701-1
Online ISBN: 978-3-642-15702-8
eBook Packages: Computer ScienceComputer Science (R0)