Abstract
The Hubbard model encapsulates the physics of strongly correlated quantum systems in its most basic form. It has been studied intensively in the context of the high-temperature superconductivity. A number of novel phases were recently proposed for Hubbard-like models on the honeycomb lattice, the structure of graphene. We analyzed the Hubbard model of spin- \(\frac{1}{2}\) fermions on the honeycomb lattice at half-filling using large-scale quantum Monte Carlo simulations. We find that the weak coupling semimetal and the antiferromagnetic Mott insulator at strong interaction are separated by an extended gapped phase in an intermediate coupling regime. Exploring excitation gaps, various correlation functions as well as probing for flux quantization, we conclude that a quantum spin liquid, lacking any conventional order, emerges with local charge and spin correlations, best described by a resonating valence bonds state.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Z.Y. Meng et al., Nature 464, 847 (2010).
J. Engel and S. Wessel, Phys. Rev. B 80, 094404 (2009).
T. Fabritius, N. Laflorencie, and S. Wessel, subm. to Phys. Rev. B (2009).
A. Honecker and S. Wessel, Cond. Mat. Phys. 12, 399 (2009).
S. Wessel, Phys. Rev. B 81, 052405 (2010).
F. Heidrich-Meisner et al., Phys. Rev. A 80, 041603(R) (2009).
P.W. Anderson, Mater. Res. Bull. 8, 153 (1973).
P. Fazekas and P.W. Anderson, Philos. Mag. 30, 423 (1974).
P.W. Anderson, Science 235, 1196 (1987).
S.A. Kivelson, D.S. Rokhsar, and J.P. Sethna, Phys. Rev. B 35, 8865 (1987).
E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).
B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, Phys. Rev. B 50, 10048 (1994).
J.D. Reger, J.A. Riera, and A.P. Young, J. Phys.: Condens. Matter 1, 1855 (1989).
J.E. Hirsch, Phys. Rev. B 31, 4403 (1985).
S.R. White et al., Phys. Rev. B 40, 506.
T. Mizusaki and M. Imada, Phys. Rev. B 74, 014421 (2006).
T. Yoshioka, A. Koga, and N. Kawakami, Phys. Rev. Lett. 103, 036401 (2009).
S. Sorella and E. Tosatti, Europhys. Lett. 19, 699 (1992).
L.M. Martelo, M. Dzierzawa, L. Siffert, and D. Baeriswyl, Z. Phys. B 103, 335 (1997).
N. Furukawa, J. Phys. Soc. Jpn. 70, 1483 (2001).
T. Paiva et al., Phys. Rev. B 72, (2005).
M. Bercx, T.C. Lang, and F.F. Assaad, Phys. Rev. B 80, 045412 (2009).
S.-S. Lee and P.A. Lee, Phys. Rev. Lett. 95, 036403 (2005).
I.F. Herbut, Phys. Rev. Lett. 97, 146401 (2006).
M. Hermele, Phys. Rev. B 76, 035125 (2007).
S. Hands and C. Strouthos, Phys. Rev. B 78, 165423 (2008).
J.E. Drut and T.A. Lähde, Phys. Rev. Lett. 102, 026802 (2009).
J.E. Drut and T.A. Lähde, Phys. Rev. B 79, 165425 (2009).
C. Honerkamp, Phys. Rev. Lett. 100, 146404 (2008).
S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys. Rev. Lett. 100, 156401 (2008).
C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Phys. Rev. B 74, 085308 (2006).
A.M. Black-Schaffer and S. Doniach, Phys. Rev. B 75, 134512 (2007).
B. Uchoa and A.H.C. Neto, Phys. Rev. Lett. 98, 146801 (2007).
N.B. Kopnin and E.B. Sonin, Phys. Rev. Lett. 100, (2008).
P. Sahebsara and D. Senechal, arXiv:0908.0474 (2009).
F.F. Assaad and H.G. Evertz, Computational Many-Particle Physics, Lecture Notes in Physics 739 (Springer-Verlag, Berlin, 2008), p. 277.
F.F. Assaad, W. Hanke, and D.J. Scalapino, Phys. Rev. Lett. 71, 1915 (1993).
F.F. Assaad, W. Hanke, and D.J. Scalapino, Phys. Rev. B 49, 4327 (1994).
N. Byers and C.N. Yang, Phys. Rev. Lett. 7, 46 (1961).
P. Gegenwart, Q.M. Si, and F. Steglich, Nature Physics 4, 186 (2008).
J.B. Fouet, P. Sindzingre, and C. Lhuillier, Eur. Phys. J. B 20, 241 (2001).
J.T. Chayes, L. Chayes, and S.A. Kivelson, Commun. Math. Phys. 123, 53 (1989).
S. Cahangirov et al., Phys. Rev. Lett. 102, 236804 (2009).
H. Nakano et al., Angew. Chem. 118, 6451 (2006).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meng, Z.Y., Lang, T.C., Wessel, S., Assaad, F.F., Muramatsu, A. (2011). Spin-Liquid Phase in the Hubbard Model on the Honeycomb Lattice. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-15748-6_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15747-9
Online ISBN: 978-3-642-15748-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)