Skip to main content

Euler-Lagrange Simulation of a LOX/H2 Model Combustor with Single Shear Coaxial Injector

  • Conference paper
High Performance Computing in Science and Engineering '10

Abstract

In this paper a mixed Euler-Lagrange approach is used for a 3D simulation of a LOX/H2 model rocket combustor with a single shear coaxial injector. The specific test case presented is the MASCOTTE combustor at 10 bar pressure in the so called A-10 configuration. The simulation of the gas phase is conducted with the scientific code TASCOM3D which works in an Eulerian mode while the liquid fuel droplets are treated by the scientific code SPRAYSIM in a Lagrangian framework. The two codes and the coupling mechanisms are explained and results of a preliminary simulation will be presented. At the end an outlook is given focusing on how to obtain an even more accurate representation of the experiment in subsequent simulations. Finally some comments on the computational costs of the calculations and the performance of the two codes on the NEC SX-9 are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang, V., Habiballah, M., Popp, M., Hulka, J., Liquid rocket thrust chambers: aspects of modeling, analysis and design, Progress in Astronautics and Aeronautics, 200, 2004.

    Google Scholar 

  2. Bundesministerium für Bildung und Forschung (BMBF), Deutsches Raumfahrtprogramm, 2001.

    Google Scholar 

  3. Haidn, O.J., Habiballah, M., Research on high pressure cryogenic combustion, Aerospace Science and Technology, 7, pp. 473–491, 2003.

    Article  Google Scholar 

  4. Deshpande, M., Grenda, J.M., Merkle, C.L., CFD Modeling for LOX/H2 Coaxial Combustor Flowfields, AIAA 96-2855, 1996.

    Google Scholar 

  5. Moser, M.D., Merenich, J.J., Pal, S., Santoro, R.J., OH-Radical Imaging and Velocity Field Measurements in a Gaseous Hydrogen/Oxygen Rocket, AIAA 93-2036, 1993.

    Google Scholar 

  6. Habiballah, M., Vingert, L., Traineau, J.C., Vuillermoz, P., MASCOTTE: a test bench for cryogenic combustion research, 47th International astronautical congress, Beijing, China, October 7.-11., 1996.

    Google Scholar 

  7. Hopfinger, E., Lasheras, J.C., Breakup of a water jet in high velocity co-flowing air, in: Proceedings of the 6th International Conference on Liquid Atomization, Rouen, France, 1994.

    Google Scholar 

  8. Coakley, T.J., Huang, P.G., Turbulence Modeling for High Speed Flows, AIAA paper 92-0436, 1992.

    Google Scholar 

  9. Ó.M. Conaire, Curran H.J., Simmie J.M., Pitz W.J., and Westbrook C.K., A comprehensive modeling study of hydrogen oxidation, International Journal of Chemical Kinetics, 36, pp. 603–622, 2004

    Article  Google Scholar 

  10. Shuen, J.S.: Upwind Differencing and LU Factorization for Chemical Non-Equilibrium Navier-Stokes Equations, Journal of Computational Physics, 99, pp. 233–250, 1992.

    Article  MATH  Google Scholar 

  11. Jameson, A., Yoon, S.: Lower-Upper Implicit Scheme with Multiple Grids for the Euler Equations, AIAA Journal, 25, pp. 929–937, 1987.

    Article  Google Scholar 

  12. Gerlinger, P., Brüggemann, D.: An Implicit Multigrid Scheme for the Compressible Navier-Stokes Equations with Low-Reynolds-Number Turbulence Closure, Journal of Fluids Engineering, 120, pp. 257–262, 1998.

    Article  Google Scholar 

  13. Gerlinger, P., Möbus, H., Brüggemann, D.: An Implicit Multigrid Method for Turbulent Combustion, Journal of Computational Physics, 167, pp. 247–276, 2001.

    Article  MATH  Google Scholar 

  14. Gerlinger, P.: Investigations of an Assumed PDF Approach for Finite-Rate-Chemistry, Combustion Science and Technology, 175, pp. 841–872, 2003.

    Article  Google Scholar 

  15. Stoll, P., Gerlinger, P., Brüggemann, D.: Domain Decomposition for an Implicit LU-SGS Scheme Using Overlapping Grids, AIAA-paper 97-1896, 1997.

    Google Scholar 

  16. Stoll, P., Gerlinger, P., Brüggemann, D.: Proceedings of the 4th ECCOMAS Conference, 1, pp. 205–212, John Wiley & Sons, 1998.

    Google Scholar 

  17. Le Clercq, P., Doué, N., Rachner, M., Aigner, M., Validation of a Multicomponent-Fuel Model for Spray Computations, AIAA 2009-1188, Proceedings of the 47th Aerospace Sciences Meeting, Orlando, FL, USA, January 5.-8., 2009.

    Google Scholar 

  18. Herding, G., Snyder R., Scouflaire, P., Rolon, C., Candel, S., Emission and Laser Induced Fluorescence Imaging of Cryogenic Propellant Combustion, Conference on Propulsive Flows in Space Transportation Systems, Bordeaux, France, 1995.

    Google Scholar 

  19. Brummund, U., Cessou, A., Oschwald, M., Vogel, A., Grisch, F., Bouchardy, P., Péalat, M., Vingert, L., Habiballah, M., Snyder, R., Laser diagnostics for cryogenic propellant combustion studies, Proceedings of the 2nd International Symposium on Liquid Rocket Propulsion, Châtillon, France, 1995.

    Google Scholar 

  20. Bazile, R., Guerre, S., Stepowski, D., “Planar Laser Induced Fluorescence of hot O2 in MASCOTTE”, Second French-German Colloquium on Research on Liquid Rocket Propulsion, Aachen, Germany, 1996.

    Google Scholar 

  21. Candel, S., Herding, G., Snyder, R., Scouflaire, P., Rolon, C., Vingert, L., Habiballah, M., Grisch, F., Péalat, M., Bouchardy, P., Stepowski, D., Cessou, A., Colin, P., Experimental Investigation of Shear Coaxial Cryogenic Jet Flames, Journal of Propulsion and Power, 14, 1998.

    Google Scholar 

  22. Habiballah, M., Orain, M., Grisch, F., Vingert, L., Gicqel, P., Experimental studies of high-pressure cryogenic flames on the MASCOTTE facility, Combustion Science and Technology, 178, pp. 101–128, 2006.

    Article  Google Scholar 

  23. Pourouchottamane, M., Dupoirieux, F., Vingert, L., Habiballah, M., Burnley, V., Numerical Analysis of the 10 bar MASCOTTE Flow Field, in: Proceedings 2nd International Workshop on Rocket Combustion Modeling, Lampoldshausen, Germany, March 25.-27., 2001

    Google Scholar 

  24. Farmer, R., Cheng, G., Chen, Y.-S., CFD Simulation of Liquid Rocket Engine Injectors, Part 2: Simulations of the RCM-2 Experiment, in Proceedings 2nd International Workshop on Rocket Combustion Modeling, Lampoldshausen, Germany, March 25.-27., 2001

    Google Scholar 

  25. Nicole, A., Dupoirieux, F., Vingert, L., Habiballah, M., Theron, M., Simulation of a subcritical LOX/GH2 MASCOTTE test case (10 bar), 5th International Spacecraft Propulsion Conference, Heraklion, Greece, May 5.-8., 2008.

    Google Scholar 

  26. Nicole, A., Ordonneau, G., Theron, M., 3D Simulation of LOX/GH2 MASCOTTE test case at 10 bar, Proceedings of the 3rd European conference for aero-space sciences (EUCASS), Versailles, France, July 6.-9., 2009.

    Google Scholar 

  27. Vingert, L., Habiballah, M., Test case RCM 2: Cryogenic spray combustion at 10 bar at Mascotte, in: Proceedings 2nd International Workshop on Rocket Combustion Modeling, Lampoldshausen, Germany, March 25.-27., 2001

    Google Scholar 

  28. Careé, I., Etude d’un injecteur coaxial assisté, PhD thesis, Université de Rouen, 1990.

    Google Scholar 

  29. Rehab, H., Villermaux, E., Hopfinger, E., Flow Regimes of Large Velocity ratio Coaxial Jets, Journal of Fluid Mechanics, 345, pp. 357–381, 1997

    Article  MathSciNet  Google Scholar 

  30. Abramzon, B., Sirignano, W.A., Droplet vaporization model for spray combustion calculations, International Journal of Heat and Mass Transfer, 32, pp. 1605–1618, 1989.

    Article  Google Scholar 

  31. Kindler, M., Rust, B., Gerlinger, P., Aigner, M., Numerical Investigations of NO X -Formation in Scramjet Combustors, In: Nagel, W.E., Kröner, D.B., Resch, M.M. [Hrsg.]: High Performance Computing in Science and Engineering ’09, Transactions of the High Performance Computing Center, Stuttgart (HLRS), pp. 197–207, ISBN 978-3-642-04664-3, 2010.

    Google Scholar 

  32. Kindler, M., Blacha, T., Lempke, M., Gerlinger, P., Aigner, M., Numerical Investigations of Model Scramjet Combustors, In: Nagel, W.E., Kröner, D.B., Resch, M.M. [Hrsg.]: High Performance Computing in Science and Engineering ’08, Transactions of the High Performance Computing Center, Stuttgart (HLRS), pp. 153–166, ISBN 978-3-540-88301-2, 2009.

    Google Scholar 

  33. Kindler, M., Gerlinger, P. and Aigner, M.: Assumed PDF Modeling of Turbulence Chemistry Interaction in Scramjet Combustors, In: Nagel, W.E., Kröner, D.B., Resch, M.M. [Hrsg.]: High Performance Computing in Science and Engineering ’07, Transactions of the High Performance Computing Center, Stuttgart (HLRS), pp. 203–213, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Lempke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lempke, M., Gerlinger, P., Rachner, M., Aigner, M. (2011). Euler-Lagrange Simulation of a LOX/H2 Model Combustor with Single Shear Coaxial Injector. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_16

Download citation

Publish with us

Policies and ethics