Skip to main content

Time-Dependent Three-Dimensional Simulation of the Turbulent Flow and Heat Transfer in Czochralski Crystal Growth Including the Three-Phase Boundary Movement

  • Conference paper
High Performance Computing in Science and Engineering '10
  • 1879 Accesses

Abstract

In the literature, numerical computations of the Czochralski process for crystal growth are conducted using a quasi-steady state assumption for the crystallization neglecting time-dependent effects. In the present work, an algorithm is developed, which allows to calculate the transient behavior of the crystallization interface including the movement of the three-phase boundary and the free surface of the melt. Thus, in conjunction with the computation of the turbulent melt flow and heat transfer, more realistic predictions of the crystal growth can be achieved. Test cases show that with the algorithm, realistic phenomena like crystal diameter increase and decrease during the growth process could be reproduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, C., Breuer, M., Wechsler, K., and Durst, F. (2001) CFD-Applications on Parallel-Vector Computers: Computations of Stirred Vessel Flows, Computers and Fluids, vol. 31, pp. 69–97

    Article  MATH  Google Scholar 

  2. Basu, B., Enger, S., Breuer, M., and Durst, F. (2000) Three-Dimensional Simulation of Flow and Thermal Field in a Czochralski Melt Using a Block–Structured Finite–Volume Method, Journal of Crystal Growth, vol. 219, pp. 123–143

    Article  Google Scholar 

  3. Derby, J.J., Brown, R.A. (1988) On the Quasi-Steady State Assumption in Modeling Czochralski Crystal Growth, Journal of Crystal Growth, vol. 87, pp. 251–260

    Article  Google Scholar 

  4. Durst, F., Schäfer, M. and Wechsler, K. (1996) Efficient Simulation of Incompressible Viscous Flows on Parallel Computers, In: Flow Simulation with High–Performance Computers II, ed. E.H. Hirschel, Notes on Numer. Fluid Mech., vol. 52, pp. 87–101, Vieweg Verlag, Braunschweig

    Google Scholar 

  5. Durst, F. and Schäfer, M. (1996) A Parallel Block–Structured Multigrid Method for the Prediction of Incompressible Flows, Int. Journal Num. Methods in Fluids, vol. 22, pp. 549–565

    Article  MATH  Google Scholar 

  6. Enger, S., Basu, B., Breuer, M., and Durst, F. (2000) Numerical Study of Three-Dimensional Mixed Convection due to Buoyancy and Centrifugal Force in an Oxide Melt for Czochralski Growth, Journal of Crystal Growth, vol. 219, pp. 123–143

    Article  Google Scholar 

  7. Enger, S., Gräbner, O., Müller, G., Breuer, M., and Durst, F. (2001) Comparison of Measurements and Numerical Simulations of Melt Convection in Czochralski Crystal Growth of Silicon, Journal of Crystal Growth, vol. 230, pp. 135–142

    Article  Google Scholar 

  8. Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. (1991) A Dynamic Subgrid-Scale Eddy Viscosity Model, Phys. Fluids A, vol. 3, pp. 1760–1765

    Article  MATH  Google Scholar 

  9. Kumar, V., Basu, B., Enger, S., Brenner, G., and Durst, F. (2003) Role of Marangoni Convection in Si-Czochralski Melts, Part II: 3D Predictions with Crystal Rotation, Journal of Crystal Growth, vol. 255, pp. 27–39

    Article  Google Scholar 

  10. Leister, H.J. and Perić, M. (1993) Vectorized Strongly Implicit Solving Procedure for a Seven-Diagonal Coefficient Matrix, Int. Journal of Heat and Fluid Flow, vol. 4, pp. 159–172

    Article  Google Scholar 

  11. Raufeisen, A., Breuer, M., Botsch, T., and Delgado, A. (2008) DNS of Rotating Buoyancy- and Surface Tension-Driven Flow, Int. Journal of Heat and Mass Transfer, vol. 51, pp. 6219–6234

    Article  MATH  Google Scholar 

  12. Raufeisen, A., Breuer, M., Botsch, T., and Delgado, A. (2009) LES Validation of Turbulent Rotating Buoyancy- and Surface Tension-Driven Flow Against DNS, Computers and Fluids, vol. 38, pp. 1549–1565

    Article  Google Scholar 

  13. Raufeisen, A., Jana, S., Breuer, M., Botsch, T., and Durst, F. (2007) 3D Computation of Oxygen Transport in Czochralski Crystal Growth of Silicon Considering Evaporation, Journal of Crystal Growth, vol. 303, pp. 146–149

    Article  Google Scholar 

  14. Rudolph, P. and Kiessling, F.-M. (2006) Growth and Characterization of GaAs Crystals Produced by the VCz Method Without Boric Oxide Encapsulation, Journal of Crystal Growth, vol. 292, pp. 532–537

    Article  Google Scholar 

  15. Smagorinsky, J. (1963) General Circulation Experiments with the Primitive Equations, I, The Basic Experiment, Mon. Weather Rev., vol. 91, pp. 99–165

    Article  Google Scholar 

  16. Stone, H.L. (1968) Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations, SIAM Journal of Numerical Analyses, vol. 5, pp. 530–558

    Article  MATH  Google Scholar 

  17. Thompson, J.F., Warsi, Z.U.A., Mastin, C.W. (1985) Numerical Grid Generation. North Holland, New York

    MATH  Google Scholar 

  18. Togawa, S., Izunome, K., Kawanishi, S., Chung, S., Terashima, K., Kimura, S. (1996) Oxygen Transport From a Silica Crucible in Czochralski Silicon Growth, Journal of Crystal Growth, vol. 165, pp. 362–371

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Raufeisen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raufeisen, A., Breuer, M., Botsch, T., Delgado, A. (2011). Time-Dependent Three-Dimensional Simulation of the Turbulent Flow and Heat Transfer in Czochralski Crystal Growth Including the Three-Phase Boundary Movement. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_27

Download citation

Publish with us

Policies and ethics