Skip to main content

Molecular Modeling of Hydrogen Bonding Fluids: Transport Properties and Vapor-Liquid Coexistence

  • Conference paper
High Performance Computing in Science and Engineering '10

Abstract

Predictions of the transport properties self-diffusion coefficient and shear viscosity are presented for a recently developed molecular ammonia model. These data show mean unsigned deviations to the experiment over a temperature range from 200 to 500 K of 8 % for the self-diffusion coefficient and 12% for the shear viscosity. Furthermore, the vapor-liquid equilibria of the ternary system carbon dioxide + cyclohexanol + cyclohexane and its binary subsystems are investigated. The modified Lorentz-Berthelot combination rule with one state-independent binary interaction parameter was used for the pairwise unlike dispersive interactions. Per binary subsystem, the parameter was adjusted to a single experimental vapor pressure. The binary subsystems are in good agreement with experimental data throughout the entire composition range. For the ternary system, the vapor pressure is underpredicted by about 12 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, M.P. Introduction to Molecular Dynamics Simulation, Computational Soft Matter, Vol. 23, John von Neumann-Institute for Computing, Julich, 2004

    Google Scholar 

  2. Guevara-Carrion, G., Vrabec, J., Hasse, H. J. Phys. Chem. B 2008, 112, 16664.

    Article  Google Scholar 

  3. Impey, R.W., Klein, M.L. Chem. Phys. Lett. 1984, 104, 579.

    Article  Google Scholar 

  4. Sagarik, K.P., Ahlrichs, R., Brode, S. Mol. Phys. 1986, 57, 1247.

    Article  Google Scholar 

  5. Mansour, K.A., Murad, S. Fluid Phase Equil. 1987, 37, 305.

    Article  Google Scholar 

  6. Eckl, B., Vrabec, J., Hasse, H. Mol. Phys. 2008, 106, 1039.

    Article  Google Scholar 

  7. Schnabel, T., Vrabec, J., Hasse, H. in Nagel, W. E.; Jäger, W.; Resch, M. (Eds.). High Performance Computing in Science and Engineering ’05 2006, 319.

    Google Scholar 

  8. Gross, T., Buchhauser, J., Price, W., Tarasov, I.N., Lüdemann, H. J. Mol. Liq. 1997, 73, 433.

    Article  Google Scholar 

  9. Lemmon, E.W., Huber, M.L., McLinden, M.O. Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties -REFPROP; NIST: 2007.

    Google Scholar 

  10. Merker T., Guevara-Carrion G., Vrabec J., Hasse H. in Nagel, W. E.; Kröner, D. B.; Resch, M. (Eds.). High Performance Computing in Science and Engineering ‘08 2009, 529.

    Google Scholar 

  11. Vrabec, J., Stoll, J., Hasse, H. J. Phys. Chem. B 2001 105, 12126.

    Article  Google Scholar 

  12. Eckl, B., Vrabec, J., Hasse H. J. Phys. Chem. B 2008 112, 12710.

    Article  Google Scholar 

  13. Schnabel, T., Vrabec, J., Hasse H. J. Mol. Liq. 2007, 135, 170.

    Article  Google Scholar 

  14. Nagarajan, N., Robinson, R.L. Jr. J. Chem. Eng. Data 1987, 32, 369.

    Article  Google Scholar 

  15. Shibata, S.K., Sandler, S.I. J. Chem. Eng. Data 1989, 34, 419.

    Article  Google Scholar 

  16. Krichevski, I.R., Sorina, G.A. Russ. J. Phys. Chem. 1960, 34, 679.

    Google Scholar 

  17. Smith, J.M., Van Ness, H.C., Abbott, M.M. Introduction to chemical engineering thermodynamics, McGraw-Hill, New York, 1996.

    Google Scholar 

  18. Chen, J.-T., Lee, M.-J. J. Chem. Eng. Data 1996, 41, 339.

    Article  Google Scholar 

  19. Chevalley, J. Bull. Soc. Chim. Fr. 1961, 52, 510.

    Google Scholar 

  20. Mukhapadhay, M., Srinivas, P. Ind. Eng. Chem. Res. 1996, 35, 4713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadran Vrabec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vrabec, J., Guevara-Carrion, G., Merker, T., Hasse, H. (2011). Molecular Modeling of Hydrogen Bonding Fluids: Transport Properties and Vapor-Liquid Coexistence. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_39

Download citation

Publish with us

Policies and ethics