Skip to main content

A Geodynamic Model of the Evolution of the Earth’s Chemical Mantle Reservoirs

  • Conference paper
High Performance Computing in Science and Engineering '10
  • 1862 Accesses

Abstract

A dynamic 3-D spherical-shell model for the chemical evolution of the Earth’s mantle is presented. Chemical differentiation, convection, stirring, and thermal evolution constitute an inseparable dynamic system. Our model is based on the solution of the balance equations of mass, momentum, energy, angular momentum, and four sums of the number of atoms of the pairs 238U-206Pb, 235U-207Pb, 232Th-208Pb, and 40K-40Ar. Similar to the present model, the continental crust of the real Earth was not produced entirely at the start of the evolution but developed episodically in batches. The details of the continental distribution of the model are largely stochastic, but the spectral properties are quite similar to the present real Earth. Fig. 6 reveals that the modelled present-day mantle has no chemical stratification but we find a marble-cake structure. If we compare the observational results of the present-day proportion of depleted MORB mantle with the model then we find a similar order of magnitude. The MORB source dominates under the lithosphere. In our model, there are nowhere pure unblended reservoirs in the mantle. It is, however, remarkable that, in spite of 4500 Ma of solid-state mantle convection, certain strong concentrations of distributed chemical reservoirs continue to persist in certain volumes, although without sharp abundance boundaries. Section 4 presents results regarding the numerical method, implementation, scalability and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.J. Allègre and E. Levin. Isotopic systems and stirring times of the Earth’s mantle. Earth Planet. Sci. Lett., 136:629–646, 1995.

    Article  Google Scholar 

  2. T.W. Becker, J.B. Kellogg, and R.J. O’Connell. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett., 171:351–365, 1999.

    Article  Google Scholar 

  3. V.C. Bennett. Compositional evolution of the mantle. In R.W. Carlson, editor, Treatise on Geochemistry, Vol. 2: The Mantle and the Core, pages 493–519. Elsevier, Amsterdam, 2003.

    Google Scholar 

  4. H.-P. Bunge and J.R. Baumgardner. Mantle convection modelling on parallel virtual machines. Computers in Physics, 9:207–215, 1995.

    Article  Google Scholar 

  5. H.-P. Bunge, M.A. Richards, and J.R. Baumgardner. A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode and an endothermic phase change. J. Geophys. Res., 102:11991–12007, 1997.

    Article  Google Scholar 

  6. N. Coltice and Y. Ricard. On the origin of noble gases in mantle plumes. Phil. Trans. Royal Soc. A: Math. Phys. Engng. Sci., 360:2633–2648, 2002.

    Article  Google Scholar 

  7. K.C. Condie. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett., 163:97–108, 1998.

    Article  Google Scholar 

  8. A.M. Dziewonski and D.L. Anderson. Preliminary reference Earth model. Phys. Earth Planet. Int., 25:297–356, 1981.

    Article  Google Scholar 

  9. J.J. Gilvarry. The Lindemann and Grüneisen laws. Phys. Rev., 102:307–316, 1956.

    Google Scholar 

  10. G.A. Glatzmaier. Numerical simulations of mantle convection: Time-dependent, three-dimensional, compressible, spherical shell. Geophys. Astrophys. Fluid Dyn., 43:223–264, 1988.

    Article  MATH  Google Scholar 

  11. K.-D. Gottschaldt, U. Walzer, R. Hendel, D.R. Stegman, J.R. Baumgardner, and H.-B. Mühlhaus. Stirring in 3-d spherical models of convection in the Earth’s mantle. Philosophical Magazine, 86:3175–3204, 2006.

    Article  Google Scholar 

  12. S.R. Hart, E.H. Hauri, L.A. Oschmann, and J.A. Whitehead. Mantle plumes and entrainment: Isotopic evidence. Science, 256:517–520, 1992.

    Article  Google Scholar 

  13. A.W. Hofmann. Chemical differentiation of the Earth: The relationship between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett., 90:297–314, 1988.

    Article  Google Scholar 

  14. A.W. Hofmann. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In R.W. Carlson, editor, Treatise on Geochemistry, Vol. 2: The Mantle and the Core, pages 61–101. Elsevier, Amsterdam, 2003.

    Google Scholar 

  15. G. Ito and J.J. Mahoney. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth Planet. Sci. Lett., 230:29–46, 2005.

    Article  Google Scholar 

  16. G. Ito and J.J. Mahoney. Flow and melting of a heterogeneous mantle: 2. Implications for a chemically nonlayered mantle. Earth Planet. Sci. Lett., 230:47–63, 2005.

    Article  Google Scholar 

  17. S.-I. Karato and P. Li. Diffusion creep in perovskite: implications for the rheology of the lower mantle. Science, 255:1238–1240, 1992.

    Article  Google Scholar 

  18. S.-I. Karato and P. Wu. Rheology of the upper mantle: a synthesis. Science, 260:771–778, 1993.

    Article  Google Scholar 

  19. J.B. Kellogg, S.B. Jacobsen, and R.J. O’Connell. Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth Planet. Sci. Lett., 204:183–202, 2002.

    Article  Google Scholar 

  20. L.H. Kellogg, B.H. Hager, and R.D. van der Hilst. Compositional stratification in the deep mantle. Science, 283:1881–1884, 1999.

    Article  Google Scholar 

  21. A.I.S. Kemp, C.J. Hawkesworth, B.A. Paterson, and P.D. Kinny. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439:580–583, 2006.

    Article  Google Scholar 

  22. B.L.N. Kennett, S. Widiyantoro, and R.D. van der Hilst. Joint seismic tomography for bulk sound and shear wave speed in the Earth’s mantle. J. Geophys. Res., 103:12469–12484, 1998.

    Article  Google Scholar 

  23. P. Li, S.-I. Karato, and Z. Wang. High-temperature creep in fine-grained polycristalline CaTiO3, an analogue material of (Mg,Fe)SiO3 perovskite. Phys. Earth Planet. Int., 95:19–36, 1996.

    Article  Google Scholar 

  24. A. Meibom and D.L. Anderson. The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217:123–139, 2003.

    Article  Google Scholar 

  25. A. Meibom, N.H. Sleep, K. Zahnle, and D.L. Anderson. Models for noble gases in mantle geochemistry: Some observations and alternatives. In G.R. Foulger et al., editors, Plumes, Plates and Paradigms, volume 388, pages 347–363. Geological Society of America Special Paper, Boulder, Colorado, 2005.

    Chapter  Google Scholar 

  26. J.P. Morgan and W.J. Morgan. Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth Planet. Sci. Lett., 170:215–239, 1999.

    Article  Google Scholar 

  27. M. Ogawa. Chemical stratification in a two-dimensional convecting mantle with magmatism and moving plates. J. Geophys. Res., 108(B12):2561, 2003.

    Article  Google Scholar 

  28. M. Ogawa. Superplumes, plates, and mantle magmatism in two-dimensional numerical models. J. Geophys. Res., 112:B06404, 2007.

    Article  Google Scholar 

  29. H. Palme and H.S.C. O’Neill. Cosmochemical estimates of mantle composition. In R.W. Carlson, editor, Treatise on Geochemistry, Vol. 2: The Mantle and the Core, pages 1–38. Elsevier, Amsterdam, 2003.

    Google Scholar 

  30. S.W. Parman. Helium isotopic evidence for episodic mantle melting and crustal growth. Nature, 446:900–903, 2007.

    Article  Google Scholar 

  31. A. Ramage and A.J. Wathen. Iterative solution techniques for finite element discretizations of fluid flow problems. In Proceedings of the Copper Mountain Conference on Iterative Methods, volume 1, Copper Mountain, Colorado, 1992.

    Google Scholar 

  32. J.F. Rudge, D. McKenzie, and P.H. Haynes. A theoretical approach to understanding the isotopic heterogeneity of mid-ocean ridge basalt. Geochim. Cosmochim. Acta, 69(15):3873–3887, 2005.

    Article  Google Scholar 

  33. J. Schmalzl. Mixing properties of thermal convection in the earth’s mantle. Geologica Ultraiectina, 140:104pp., 1996.

    Google Scholar 

  34. G. Schubert, D.L. Turcotte, and T.R. Olson. Mantle Convection in the Earth and Planets. Cambridge Univ. Press, Cambridge, UK, 2001.

    Book  Google Scholar 

  35. A. Stracke, A.W. Hofmann, and S.R. Hart. FOZO, HIMU and the rest of the mantle zoo. Geochem. Geophys. Geosys., 6:Q05007, 2005.

    Article  Google Scholar 

  36. W.-J. Su and A.M. Dziewonski. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Int., 100:135–156, 1997.

    Article  Google Scholar 

  37. P.J. Tackley. Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: D”? In M. Gurnis et al., editors, The Core-Mantle Boundary Region, Geodyn. Ser., vol. 28, pages 231–253. AGU, Washington, D. C., 1998.

    Google Scholar 

  38. P.J. Tackley. Mantle convection and plate tectonics: Towards an integrated physical and chemical theory. Science, 288:2002–2007, 2000.

    Article  Google Scholar 

  39. U. Walzer and R. Hendel. Mantle convection and evolution with growing continents. J. Geophys. Res., 113:B09405, doi:10.1029/2007JB005459, 2008.

    Article  Google Scholar 

  40. U. Walzer, R. Hendel, and J. Baumgardner. The effects of a variation of the radial viscosity profile on mantle evolution. Tectonophysics, 384:55–90, 2004.

    Article  Google Scholar 

  41. U. Walzer, R. Hendel, and J. Baumgardner. Whole-mantle convection, continent generation, and preservation of geochemical heterogeneity. In W.E. Nagel, D.B. Kröner, and M.M. Resch, editors, High Perf. Comp. Sci. Engng. ’07, pages 603–645. Springer, Berlin, 2008.

    Google Scholar 

  42. M. Willbold and A. Stracke. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosys., 7:Q04004, 2006.

    Article  Google Scholar 

  43. M. Wilson and E.A. Spencer. The origin and evolution of the fozo/prema and himu mantle components—the carbonatite perspective. http://www.geo.uw.edu.pl/ERASMUS/files/wilson3.ppt, 2003.

  44. D. Yamazaki and S.-I. Karato. Some mineral physics constraints on the rheology and geothermal structure of the Earth’s lower mantle. Am. Min., 86:385–391, 2001.

    Google Scholar 

  45. W.-S. Yang. Variable viscosity thermal convection at infinite Prandtl number in a thick spherical shell. PhD thesis, University of Illinois, Urbana-Champaign, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Walzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walzer, U., Hendel, R. (2011). A Geodynamic Model of the Evolution of the Earth’s Chemical Mantle Reservoirs. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_42

Download citation

Publish with us

Policies and ethics