Skip to main content

MRIM-LIG at ImageCLEF 2009: Robotvision, Image Annotation and Retrieval Tasks

  • Conference paper
Multilingual Information Access Evaluation II. Multimedia Experiments (CLEF 2009)

Abstract

This paper describes mainly the experiments that have been conducted by the MRIM group at the LIG in Grenoble for the the ImageCLEF 2009 campaign, focusing on the work done for the Robotvision task. The proposal for this task is to study the behaviour of a generative approach inspired by the language model of information retrieval. To fit with the specificity of the Robotvision task, we added post-processing in a way to tackle with the fact that images do belong only to several classes (rooms) and that image are not independent from each others (i.e., the robot cannot in one second be in three different rooms). The results obtained still need improvement, but the use of such language model in the case of Robotvision is showed. Some results related to the Image Retrieval task and the Image annotation task are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Caputo, B., Pronobis, A., Jensfelt, P.: Overview of the clef 2009 robot vision track. In: Peters, C., et al. (eds.) CLEF 2009 Workshop, Part II. LNCS, vol. 6242, pp. 110–119. Springer, Heidelberg (2010)

    Google Scholar 

  2. Fergus, R., Perona, P., Zisserman, A.: A sparse object category model for efficient learning and exhaustive recognition. In: Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  3. Gao, J., Nie, J.-Y., Wu, G., Cao, G.: Dependence language model for information retrieval. In: ACM SIGIR 2004, pp. 170–177 (2004)

    Google Scholar 

  4. Gosselin, P., Cord, M., Philipp-Foliguet, S.: Kernels on bags of fuzzy regions for fast object retrieval. In: International Conference on Image Processing (2007)

    Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 91–110 (2004)

    Google Scholar 

  6. Luo, J., Pronobis, A., Caputo, B., Jensfelt, P.: Incremental learning for place recognition in dynamic environments. In: Proc. IROs 2007 (2007)

    Google Scholar 

  7. Maisonnasse, L., Gaussier, E., Chevalet, J.P.: Model fusion in conceptual language modeling. In: ECIR 2009, pp. 240–251 (2009)

    Google Scholar 

  8. Maisonnasse, L., Gaussier, E., Chevallet, J.: Revisiting the dependence language model for information retrieval. In: Poster SIGIR 2007 (2007)

    Google Scholar 

  9. Maisonnasse, L., Gaussier, E., Chevallet, J.: Multiplying concept sources for graph modeling. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 585–592. Springer, Heidelberg (2008) (to be published)

    Chapter  Google Scholar 

  10. Pham, T.T., Maisonnasse, L., Mulhem, P., Gaussier, E.: Visual language model for scene recognition. In: Proceedings of SinFra 2009, Singapore (2009)

    Google Scholar 

  11. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: ACM SIGIR 1998, pp. 275–281 (1998)

    Google Scholar 

  12. Song, F., Croft, W.B.: General language model for information retrieval. In: CIKM 1999, pp. 316–321 (1999)

    Google Scholar 

  13. Srikanth, M., Srikanth, R.: Biterm language models for document retrieval. In: Research and Development in Information Retrieval, pp. 425–426 (2002)

    Google Scholar 

  14. Tahir, M.A., Kittler, J., Mikolajczyk, K., Yan, F.: A multiple expert approach to the class imbalance problem using inverse random under sampling. In: Multiple Classifier Systems, Reykjavik, Iceland, pp. 82–91 (2009)

    Google Scholar 

  15. Won, C.S., Park, D.K., Park, S.-J.: Efficient use of mpeg-7 edge histogram descriptor. ETRI Journal 24(1) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pham, TT., Maisonnasse, L., Mulhem, P., Chevallet, JP., Quénot, G., Al Batal, R. (2010). MRIM-LIG at ImageCLEF 2009: Robotvision, Image Annotation and Retrieval Tasks. In: Peters, C., et al. Multilingual Information Access Evaluation II. Multimedia Experiments. CLEF 2009. Lecture Notes in Computer Science, vol 6242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15751-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15751-6_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15750-9

  • Online ISBN: 978-3-642-15751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics