Abstract
This paper describes mainly the experiments that have been conducted by the MRIM group at the LIG in Grenoble for the the ImageCLEF 2009 campaign, focusing on the work done for the Robotvision task. The proposal for this task is to study the behaviour of a generative approach inspired by the language model of information retrieval. To fit with the specificity of the Robotvision task, we added post-processing in a way to tackle with the fact that images do belong only to several classes (rooms) and that image are not independent from each others (i.e., the robot cannot in one second be in three different rooms). The results obtained still need improvement, but the use of such language model in the case of Robotvision is showed. Some results related to the Image Retrieval task and the Image annotation task are also presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Caputo, B., Pronobis, A., Jensfelt, P.: Overview of the clef 2009 robot vision track. In: Peters, C., et al. (eds.) CLEF 2009 Workshop, Part II. LNCS, vol. 6242, pp. 110–119. Springer, Heidelberg (2010)
Fergus, R., Perona, P., Zisserman, A.: A sparse object category model for efficient learning and exhaustive recognition. In: Conference on Computer Vision and Pattern Recognition (2005)
Gao, J., Nie, J.-Y., Wu, G., Cao, G.: Dependence language model for information retrieval. In: ACM SIGIR 2004, pp. 170–177 (2004)
Gosselin, P., Cord, M., Philipp-Foliguet, S.: Kernels on bags of fuzzy regions for fast object retrieval. In: International Conference on Image Processing (2007)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 91–110 (2004)
Luo, J., Pronobis, A., Caputo, B., Jensfelt, P.: Incremental learning for place recognition in dynamic environments. In: Proc. IROs 2007 (2007)
Maisonnasse, L., Gaussier, E., Chevalet, J.P.: Model fusion in conceptual language modeling. In: ECIR 2009, pp. 240–251 (2009)
Maisonnasse, L., Gaussier, E., Chevallet, J.: Revisiting the dependence language model for information retrieval. In: Poster SIGIR 2007 (2007)
Maisonnasse, L., Gaussier, E., Chevallet, J.: Multiplying concept sources for graph modeling. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 585–592. Springer, Heidelberg (2008) (to be published)
Pham, T.T., Maisonnasse, L., Mulhem, P., Gaussier, E.: Visual language model for scene recognition. In: Proceedings of SinFra 2009, Singapore (2009)
Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: ACM SIGIR 1998, pp. 275–281 (1998)
Song, F., Croft, W.B.: General language model for information retrieval. In: CIKM 1999, pp. 316–321 (1999)
Srikanth, M., Srikanth, R.: Biterm language models for document retrieval. In: Research and Development in Information Retrieval, pp. 425–426 (2002)
Tahir, M.A., Kittler, J., Mikolajczyk, K., Yan, F.: A multiple expert approach to the class imbalance problem using inverse random under sampling. In: Multiple Classifier Systems, Reykjavik, Iceland, pp. 82–91 (2009)
Won, C.S., Park, D.K., Park, S.-J.: Efficient use of mpeg-7 edge histogram descriptor. ETRI Journal 24(1) (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pham, TT., Maisonnasse, L., Mulhem, P., Chevallet, JP., Quénot, G., Al Batal, R. (2010). MRIM-LIG at ImageCLEF 2009: Robotvision, Image Annotation and Retrieval Tasks. In: Peters, C., et al. Multilingual Information Access Evaluation II. Multimedia Experiments. CLEF 2009. Lecture Notes in Computer Science, vol 6242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15751-6_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-15751-6_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15750-9
Online ISBN: 978-3-642-15751-6
eBook Packages: Computer ScienceComputer Science (R0)