Abstract
We propose a method for providing stochastic confidence estimates for rule-based and black-box natural language (NL) processing systems. Our method does not require labeled training data: We simply train stochastic models on the output of the original NL systems. Numeric confidence estimates enable both minimum Bayes risk–style optimization as well as principled system combination for these knowledge-based and black-box systems. In our specific experiments, we enrich ParaMor, a rule-based system for unsupervised morphology induction, with probabilistic segmentation confidences by training a statistical natural language tagger to simulate ParaMor’s morphological segmentations. By adjusting the numeric threshold above which the simulator proposes morpheme boundaries, we improve F1 of morpheme identification on a Hungarian corpus by 5.9% absolute. With numeric confidences in hand, we also combine ParaMor’s segmentation decisions with those of a second (black-box) unsupervised morphology induction system, Morfessor. Our joint ParaMor-Morfessor system enhances F1 performance by a further 3.4% absolute, ultimately moving F1 from 41.4% to 50.7%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Oflazer, K., El-Kahlout, İ.D.: Exploring Different Representational Units in English-to-Turkish Statistical Machine Translation. In: Statistical MT Workshop at ACL (2007)
Creutz, M.: Induction of the Morphology of Natural Language: Unsupervised Morpheme Segmentation with Application to Automatic Speech Recognition. Ph.D. Thesis, Computer and Information Science, Report D13, Helsinki, University of Technology, Espoo, Finland (2006)
Harris, Z.: From Phoneme to Morpheme. Language, 31(2), 190-222 (1955); Reprinted in Harris, Z.: Papers in Structural and Transformational Linguists. Reidel D. (ed.), Dordrecht (1970)
Bernhard, D.: Simple Morpheme Labeling in Unsupervised Morpheme Analysis. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 873–880. Springer, Heidelberg (2008)
Goldsmith, J.: Unsupervised Learning of the Morphology of a Natural Language. Computational Linguistics 27(2), 153–198 (2001)
Snyder, B., Barzilay, R.: Unsupervised Multilingual Learning for Morphological Segmentation. In: Proceedings of ACL 2008: HLT (2008)
Poon, H., Cherry, C., Toutanova, K.: Unsupervised Morphological Segmentation with Log-Linear Models. In: Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL (2009)
Monson, C.: ParaMor: From Paradigm Structure to Natural Language Morphology Induction. Ph.D. Thesis, Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania (2009)
Monson, C., Carbonell, J., Lavie, A., Levin, L.: ParaMor and Morpho Challenge 2008. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo, M., Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 967–974. Springer, Heidelberg (2009)
Tjong Kim Sang, E. F.: Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition. In: Proceedings of CoNLL 2002 (2002)
Tjong Kim Sang, E. F., Buchholz, S.: Introduction to the CoNLL-2000 Shared Task: Chunking. In: Computational Natural Language Learning, CoNLL (2000)
Roark, B., Hollingshead, K.: Linear Complexity Context-Free Parsing Pipelines via Chart Constraints. In: Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL (2009)
Xue, N.: Chinese Word Segmentation as Character Tagging. Computational Linguistics and Chinese Language Processing 8(1), 29–47 (2003)
Hollingshead, K., Fisher, S., Roark, B.: Comparing and Combining Finite-State and Context-Free Parsers. In: Human Language Technology Conference and the Conference on Empirical Methods in Natural Language Processing, HLT/EMNLP (2005)
Collins, M.: Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms. In: Conference on Empirical Methods in Natural Language Processing, EMNLP (2002)
Kurimo, M., Virpioja, S., Turunen, V.T., Blackwood, G.W., Byrne, W.: Overview and Results of Morpho Challenge 2009. In: 10th Workshop of the Cross-Language Evaluation Forum, CLEF 2009, Corfu, Greece, Revised Selected Papers. LNCS, Springer, Heidelberg (2010)
Trón, V., Gyepesi, G., Halácsy, P., Kornai, A., Németh, L., Varga, D.: Hunmorph: Open Source Word Analysis. In: ACL Workshop on Software (2005)
Varga, D., Halácsy, P., Kornai, A., Németh, L., Trón, V., Váradi, T., Sass, B., Bottyán, G., Héja, E., Gyarmati, Á., Mészáros, Á., Labundy, D.: Hunglish corpus, http://mokk.bme.hu/resources/hunglishcorpus (accessed on August 18, 2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Monson, C., Hollingshead, K., Roark, B. (2010). Simulating Morphological Analyzers with Stochastic Taggers for Confidence Estimation. In: Peters, C., et al. Multilingual Information Access Evaluation I. Text Retrieval Experiments. CLEF 2009. Lecture Notes in Computer Science, vol 6241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15754-7_78
Download citation
DOI: https://doi.org/10.1007/978-3-642-15754-7_78
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15753-0
Online ISBN: 978-3-642-15754-7
eBook Packages: Computer ScienceComputer Science (R0)