Skip to main content

Simulating Morphological Analyzers with Stochastic Taggers for Confidence Estimation

  • Conference paper
Multilingual Information Access Evaluation I. Text Retrieval Experiments (CLEF 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6241))

Included in the following conference series:

Abstract

We propose a method for providing stochastic confidence estimates for rule-based and black-box natural language (NL) processing systems. Our method does not require labeled training data: We simply train stochastic models on the output of the original NL systems. Numeric confidence estimates enable both minimum Bayes risk–style optimization as well as principled system combination for these knowledge-based and black-box systems. In our specific experiments, we enrich ParaMor, a rule-based system for unsupervised morphology induction, with probabilistic segmentation confidences by training a statistical natural language tagger to simulate ParaMor’s morphological segmentations. By adjusting the numeric threshold above which the simulator proposes morpheme boundaries, we improve F1 of morpheme identification on a Hungarian corpus by 5.9% absolute. With numeric confidences in hand, we also combine ParaMor’s segmentation decisions with those of a second (black-box) unsupervised morphology induction system, Morfessor. Our joint ParaMor-Morfessor system enhances F1 performance by a further 3.4% absolute, ultimately moving F1 from 41.4% to 50.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Oflazer, K., El-Kahlout, İ.D.: Exploring Different Representational Units in English-to-Turkish Statistical Machine Translation. In: Statistical MT Workshop at ACL (2007)

    Google Scholar 

  2. Creutz, M.: Induction of the Morphology of Natural Language: Unsupervised Morpheme Segmentation with Application to Automatic Speech Recognition. Ph.D. Thesis, Computer and Information Science, Report D13, Helsinki, University of Technology, Espoo, Finland (2006)

    Google Scholar 

  3. Harris, Z.: From Phoneme to Morpheme. Language, 31(2), 190-222 (1955); Reprinted in Harris, Z.: Papers in Structural and Transformational Linguists. Reidel D. (ed.), Dordrecht (1970)

    Google Scholar 

  4. Bernhard, D.: Simple Morpheme Labeling in Unsupervised Morpheme Analysis. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 873–880. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Goldsmith, J.: Unsupervised Learning of the Morphology of a Natural Language. Computational Linguistics 27(2), 153–198 (2001)

    Article  MathSciNet  Google Scholar 

  6. Snyder, B., Barzilay, R.: Unsupervised Multilingual Learning for Morphological Segmentation. In: Proceedings of ACL 2008: HLT (2008)

    Google Scholar 

  7. Poon, H., Cherry, C., Toutanova, K.: Unsupervised Morphological Segmentation with Log-Linear Models. In: Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL (2009)

    Google Scholar 

  8. Monson, C.: ParaMor: From Paradigm Structure to Natural Language Morphology Induction. Ph.D. Thesis, Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania (2009)

    Google Scholar 

  9. Monson, C., Carbonell, J., Lavie, A., Levin, L.: ParaMor and Morpho Challenge 2008. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo, M., Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 967–974. Springer, Heidelberg (2009)

    Google Scholar 

  10. Tjong Kim Sang, E. F.: Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition. In: Proceedings of CoNLL 2002 (2002)

    Google Scholar 

  11. Tjong Kim Sang, E. F., Buchholz, S.: Introduction to the CoNLL-2000 Shared Task: Chunking. In: Computational Natural Language Learning, CoNLL (2000)

    Google Scholar 

  12. Roark, B., Hollingshead, K.: Linear Complexity Context-Free Parsing Pipelines via Chart Constraints. In: Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL (2009)

    Google Scholar 

  13. Xue, N.: Chinese Word Segmentation as Character Tagging. Computational Linguistics and Chinese Language Processing 8(1), 29–47 (2003)

    Google Scholar 

  14. Hollingshead, K., Fisher, S., Roark, B.: Comparing and Combining Finite-State and Context-Free Parsers. In: Human Language Technology Conference and the Conference on Empirical Methods in Natural Language Processing, HLT/EMNLP (2005)

    Google Scholar 

  15. Collins, M.: Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms. In: Conference on Empirical Methods in Natural Language Processing, EMNLP (2002)

    Google Scholar 

  16. Kurimo, M., Virpioja, S., Turunen, V.T., Blackwood, G.W., Byrne, W.: Overview and Results of Morpho Challenge 2009. In: 10th Workshop of the Cross-Language Evaluation Forum, CLEF 2009, Corfu, Greece, Revised Selected Papers. LNCS, Springer, Heidelberg (2010)

    Google Scholar 

  17. Trón, V., Gyepesi, G., Halácsy, P., Kornai, A., Németh, L., Varga, D.: Hunmorph: Open Source Word Analysis. In: ACL Workshop on Software (2005)

    Google Scholar 

  18. Varga, D., Halácsy, P., Kornai, A., Németh, L., Trón, V., Váradi, T., Sass, B., Bottyán, G., Héja, E., Gyarmati, Á., Mészáros, Á., Labundy, D.: Hunglish corpus, http://mokk.bme.hu/resources/hunglishcorpus (accessed on August 18, 2009)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Monson, C., Hollingshead, K., Roark, B. (2010). Simulating Morphological Analyzers with Stochastic Taggers for Confidence Estimation. In: Peters, C., et al. Multilingual Information Access Evaluation I. Text Retrieval Experiments. CLEF 2009. Lecture Notes in Computer Science, vol 6241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15754-7_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15754-7_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15753-0

  • Online ISBN: 978-3-642-15754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics