Abstract
We describe powerful computational methods, relying on linear algebraic methods, for generating ideals for non-linear invariants of algebraic hybrid systems. We show that the preconditions for discrete transitions and the Lie-derivatives for continuous evolution can be viewed as morphisms and so can be suitably represented by matrices. We reduce the non-trivial invariant generation problem to the computation of the associated eigenspaces by encoding the new consecution requirements as specific morphisms represented by matrices. More specifically, we establish very general sufficient conditions that show the existence and allow the computation of invariant ideals. Our methods also embody a strategy to estimate degree bounds, leading to the discovery of rich classes of inductive, i.e. provable, invariants. Our approach avoids first-order quantifier elimination, Grobner basis computation or direct system resolution, thereby circumventing difficulties met by other recent techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Henzinger, T.: The theory of hybrid automata. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (LICS 1996), New Brunswick, New Jersey, pp. 278–292 (1996)
Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs. Journal of Logic Programming 13(2-3), 103–179 (1992)
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conf. Record of the 4th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Los Angeles, California, pp. 238–252. ACM Press, New York (1977)
Manna, Z.: Mathematical Theory of Computation. McGrw-Hill, New York (1974)
Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid system. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–554. Springer, Heidelberg (2004)
Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008)
Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates (2004)
Tiwari, A.: Generating box invariants. In: Proc. of the 11th Int. Conf. on Hybrid Systems: Computation and Control HSCC (2008)
Sankaranarayanan, S., Dang, T., Ivancic, F.: Symbolic model checking of hybrid systems using template polyhedra. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 188–202. Springer, Heidelberg (2008)
Buchberger, B.: Symbolic computation: Computer algebra and logic. In: Proceedings of the 1st Int. Workshop on Frontiers of Combining Systems, pp. 193–220 (1996)
Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond. Applicable Algebra in Engineering, Communication and Computing 8(2), 85–101 (1997)
Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT 1(3-4), 209–236 (2007)
Tiwari, A., Khanna, G.: Nonlinear systems: Approximating reach sets. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Heidelberg (2004)
Rodriguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 590–605. Springer, Heidelberg (2005)
Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–189. Springer, Heidelberg (2008)
Matringe, N., Moura, A.V., Rebiha, R.: Morphisms for non-trivial non-linear invariant generation for algebraic hybrid systems. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 445–449. Springer, Heidelberg (2009)
Matringe, N., Moura, A.V., Rebiha, R.: Morphisms for analysis of hybrid systems. In: ACM/IEEE Cyber-Physical Systems CPSWeek 2009, Second International Workshop on Numerical Software Verification (NSV 2009) Verification of Cyber-Physical Software Systems, San Francisco, CA, USA (2009)
Matringe, N., Moura, A.V., Rebiha, R.: Endomorphisms for non-trivial non-linear loop invariant generation. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 425–439. Springer, Heidelberg (2008)
Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In: HSCC 2010: Proc. of the 13th ACM Int. Conf. on Hybrid Systems: Computation and Control, pp. 221–230. ACM, New York (2010)
Matringe, N., Vieira-Moura, A., Rebiha, R.: Morphisms for non-trivial non-linear invariant generation for algebraic hybrid systems. Technical Report TR-IC-08-32, Institute of Computing, University of Campinas (November 2008)
Matringe, N., Vieira-Moura, A., Rebiha, R.: Endomorphism for non-trivial semi-algebraic loop invariant generation. Technical Report TR-IC-08-31, Institute of Computing, University of Campinas (November 2008)
Lang, S.: Algebra. Springer, Heidelberg (January 2002)
Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multiagent hybrid systems. IEEE Transactions on Automatic Control 43(4), 509–521 (1998)
Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic Algebraic Model Checking I: Challenges from Systems Biology. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidelberg (2005)
Ramdani, N., Meslem, N., Candau, Y.: Reachability of uncertain nonlinear systems using a nonlinear hybridization. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 415–428. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Matringe, N., Moura, A.V., Rebiha, R. (2010). Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Methods. In: Cousot, R., Martel, M. (eds) Static Analysis. SAS 2010. Lecture Notes in Computer Science, vol 6337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15769-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-15769-1_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15768-4
Online ISBN: 978-3-642-15769-1
eBook Packages: Computer ScienceComputer Science (R0)