Skip to main content

Communication Complexity of Quasirandom Rumor Spreading

  • Conference paper
Algorithms – ESA 2010 (ESA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6346))

Included in the following conference series:

  • 1785 Accesses

Abstract

We consider rumor spreading on random graphs and hypercubes in the quasirandom phone call model. In this model, every node has a list of neighbors whose order is specified by an adversary. In step i every node opens a channel to its ith neighbor (modulo degree) on that list, beginning from a randomly chosen starting position. Then, the channels can be used for bi-directional communication in that step. The goal is to spread a message efficiently to all nodes of the graph.

We show three results. For random graphs (with sufficiently many edges) we present an address-oblivious algorithm with runtime O(logn) that uses at most O(n log log n) message transmissions. For hypercubes of dimension log n we present an address-oblivious algorithm with runtime O(log n) that uses at most O(n (log log n)2) message transmissions. For hypercubes we also show a lower bound of Ω(n log n/log log n) on the total number of message transmissions required by any O(log n) time address-oblivious algorithm in the standard random phone call model. Together with a result of [8], our results imply that for random graphs and hypercubes the communication complexity of the quasirandom phone call model is significantly smaller than that of the standard phone call model. This seems to be surprising given the small amount of randomness used in our model.

The second author was partially supported by the German Research Foundation (DFG) under contract EL 399/2-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berenbrink, P., Elsässer, R., Friedetzky, T.: Efficient Randomised Broadcasting in Random Regular Networks with Applications in Peer-to-Peer Systems. In: Proc. of PODC 2008, pp. 155–164 (2008)

    Google Scholar 

  2. Berenbrink, P., Elsässer, R., Sauerwald, T.: Randomised Broadcasting: Memory vs. Randomness. In: Proc. of LATIN 2010 (to appear, 2010)

    Google Scholar 

  3. Bollobás, B.: Random Graphs. Academic Press, London (1985)

    MATH  Google Scholar 

  4. Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost Tight Bounds for Rumour Spreading with Conductance. In: Proc. of STOC 2010 (to appear, 2010)

    Google Scholar 

  5. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proc. of PODC 1987, pp. 1–12 (1987)

    Google Scholar 

  6. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom Rumor Spreading. In: Proc. of SODA 2008, pp. 773–781 (2008)

    Google Scholar 

  7. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading: expanders, push vs. pull, and robustness. In: Proc. of ICALP 2009, pp. 366–377 (2009)

    Google Scholar 

  8. Elsässer, R.: On the communication complexity of randomized broadcasting in random-like graphs. In: Proc. of SPAA 2006, pp. 148–157 (2006)

    Google Scholar 

  9. Elsässer, R., Sauerwald, T.: The power of memory in randomized broadcasting. In: Proc. of SODA 2008, pp. 218–227 (2008)

    Google Scholar 

  10. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  11. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Structures and Algorithms 1(4), 447–460 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random arc-lengths. Discrete Applied Mathematics 10, 57–77 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fountoulakis, N., Huber, A., Panagiotou, K.: Reliable broadcasting in random networks and the effect of density. In: Proc. of INFOCOM 2010 (to appear, 2010)

    Google Scholar 

  14. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing Letters 36(6), 305–308 (1990)

    Article  Google Scholar 

  15. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: Proc. of FOCS 2000, pp. 565–574 (2000)

    Google Scholar 

  16. McDiarmid, C.: On the method of bounded differences. In: Surveys in Combinatorics. London Math. Soc. Lectures Notes, vol. 141, pp. 148–188. Cambridge Univ. Press, Cambridge (1989)

    Google Scholar 

  17. Pittel, B.: On spreading rumor. SIAM Journal on Applied Mathematics 47(1), 213–223 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berenbrink, P., Elsässer, R., Sauerwald, T. (2010). Communication Complexity of Quasirandom Rumor Spreading. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15775-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15775-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15774-5

  • Online ISBN: 978-3-642-15775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics