Skip to main content

Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-Dimensional Space

with Fast Point-Location

  • Conference paper
Algorithms – ESA 2010 (ESA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6346))

Included in the following conference series:

Abstract

We introduce a new, efficient, and complete algorithm, and its exact implementation, to compute the Voronoi diagram of lines in space. This is a major milestone towards the robust construction of the Voronoi diagram of polyhedra. As we follow the exact geometric-computation paradigm, it is guaranteed that we always compute the mathematically correct result. The algorithm is complete in the sense that it can handle all configurations, in particular all degenerate ones. The algorithm requires O(n 3 + ε) time and space, where n is the number of lines. The Voronoi diagram is represented by a data structure that permits answering point-location queries in O(log2 n) expected time. The implementation employs the Cgal packages for constructing arrangements and lower envelopes together with advanced algebraic tools.

This work has been supported in part by the Israel Science Foundation (grant no. 236/06), by the German-Israeli Foundation (grant no. 969/07), and by the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Schwarzkopf, O., Sharir, M.: The overlay of lower envelopes and its applications. Disc. Comput. Geom. 15(1), 1–13 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J., Urrutia, G. (eds.) Handb. Comput. Geom., ch. 5, pp. 201–290. Elsevier, Amsterdam (2000)

    Google Scholar 

  3. Austern, M.H.: Generic Programming and the STL. Addison-Wesley, Reading (1999)

    Google Scholar 

  4. Berberich, E., Hemmer, M., Kerber, M.: A generic algebraic kernel for non-linear geometric applications. Research Report 7274, INRIA (2010)

    Google Scholar 

  5. Berberich, E., Hemmer, M., Kettner, L., Schömer, E., Wolpert, N.: An exact, complete and efficient implementation for computing planar maps of quadric intersection curves. In: Mitchell, J., Rote, G., Kettner, L. (eds.) Proc. 21st Annu. ACM Symp. Comput. Geom., pp. 99–106. ACM Press, Pisa (2005)

    Google Scholar 

  6. Blum, H.: A transformation for extracting new descriptors of shape. In: WathenDunn, W. (ed.) Models for the Perception of Speech and Visual Form. MIT Press, Cambridge (1967)

    Google Scholar 

  7. Boissonnat, J.D., Delage, C.: Convex hull and Voronoi diagram of additively weighted points. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 367–378. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Boissonnat, J.D., Teillaud, M. (eds.): Effective Computational Geometry for Curves and Surfaces. Mathematics and Visualization. Springer, Heidelberg (2006)

    Google Scholar 

  9. Culver, T., Keyser, J., Manocha, D.: Exact computation of the medial axis of a polyhedron. Computer Aided Geometric Design 21(1), 65–98 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Devillers, O.: Improved incremental randomized Delaunay triangulation. In: Proc. 14th Annu. ACM Symp. Comput. Geom., pp. 106–115. ACM Press, New York (1998)

    Google Scholar 

  11. Devroye, L., Lemaire, C., Moreau, J.M.: Expected time analysis for Delaunay point location. Computational Geometry 29(2), 61–89 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dupont, L., Hemmer, M., Petitjean, S., Schömer, E.: Complete, exact and efficient implementation for computing the adjacency graph of an arrangement of quadrics. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 633–644. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Disc. Comput. Geom. 1, 25–44 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.M.: The predicates for the Voronoi diagram of ellipses. In: Proc. 22nd Annu. ACM Symp. Comput. Geom., pp. 227–236. ACM Press, New York (2006)

    Google Scholar 

  15. Emiris, I.Z., Karavelas, M.I.: The predicates of the Apollonius diagram: Algorithmic analysis and implementation. Comput. Geom. Theory Appl. 33(1-2), 18–57 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Everett, H., Gillot, C., Lazard, D., Lazard, S., Pouget, M.: The Voronoi diagram of three arbitrary lines in \({\mathbb R}^3\). In: Abstracts of 25th Eur. Workshop Comput. Geom. (2009)

    Google Scholar 

  17. Everett, H., Lazard, S., Lazard, D., Din, M.S.E.: The Voronoi diagram of three lines. In: Proc. 23rd Annu. ACM Symp. Comput. Geom., pp. 255–264. ACM Press, New York (2007)

    Google Scholar 

  18. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  19. Halperin, D., Kavraki, L.E., Latombe, J.C.: Robotics. In: Goodman, J.E., O’Rourke, J. (eds.) Handb. Disc. Comput. Geom., 2nd edn., ch. 48, pp. 1065–1093. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  20. Hanniel, I., Elber, G.: Computing the Voronoi cells of planes, spheres and cylinders in \({\mathbb R}^3\). Comput. Aided Geom. Des. 26(6), 695–710 (2009)

    Article  MathSciNet  Google Scholar 

  21. Haran, I., Halperin, D.: An experimental study of point location in planar arrangements in CGAL. ACM Journal of Experimental Algorithmics 13 (2008)

    Google Scholar 

  22. Frey, P.J.: : MEDIT : An interactive Mesh visualization Software. Technical Report RT-0253, INRIA (December 2001)

    Google Scholar 

  23. Karavelas, M.I.: A robust and effient implementation for the segment Voronoi diagram. In: Int. Symp. on Voronoi Diagrams in Sci. and Engineering, pp. 51–62 (2004)

    Google Scholar 

  24. Karavelas, M.I., Yvinec, M.: Dynamic additively weighted Voronoi diagrams in 2D. In: Proc. 10th Annu. Eur. Symp. Alg., pp. 586–598. Springer, London (2002)

    Google Scholar 

  25. Kim, D.S., Seo, J., Kim, D., Cho, Y., Ryu, J.: The beta-shape and beta-complex for analysis of molecular structures. In: Gavrilova, M.L. (ed.) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol. 158, pp. 47–66. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Koltun, V., Sharir, M.: 3-dimensional Euclidean Voronoi diagrams of lines with a fixed number of orientations. SIAM J. on Computing 32(3), 616–642 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Milenkovic, V.: Robust construction of the Voronoi diagram of a polyhedron. In: Proc. 5th Canad. Conf. Comput. Geom., pp. 473–478 (1993)

    Google Scholar 

  28. Mulmuley, K.: A fast planar partition algorithm, I. In: Proc. 29th Annu. IEEE Sympos. Found. Comput. Sci., pp. 580–589 (1988)

    Google Scholar 

  29. Myers, N.: Traits: A new and useful template technique. C++ Gems 17 (1995)

    Google Scholar 

  30. Rineau, L., Yvinec, M.: 3D surface mesh generation. In: CGAL Editorial Board CGAL User and Reference Manual (ed.), 3.5 edn. (2009)

    Google Scholar 

  31. Setter, O., Sharir, M., Halperin, D.: Constructing two-dimensional Voronoi diagrams via divide-and-conquer of envelopes in space. Transactions on Computational Sciences (to appear, 2010)

    Google Scholar 

  32. Sharir, M.: Almost tight upper bounds for lower envelopes in higher dimensions. Disc. Comput. Geom. 12(1), 327–345 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board, 3.6 edn. (2010), http://www.cgal.org/

  34. Wein, R., van den Berg, J.P., Halperin, D.: The visibility-Voronoi complex and its applications. Computational Geometry: Theory and Applications 36(1), 66–87 (2007); special Issue on the 21st European Workshop on Computational Geometry - EWCG 2005

    Google Scholar 

  35. Yaffe, E., Halperin, D.: Approximating the pathway axis and the persistence diagram of a collection of balls in 3-space. In: Proc. 24th Annu. ACM Symp. Comput. Geom., pp. 260–269. ACM Press, New York (2008)

    Google Scholar 

  36. Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.Z., Hwang, F.K. (eds.) Computing in Euclidean Geometry, 2nd edn. LNCS, vol. 1, pp. 452–492. World Scientific, Singapore (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hemmer, M., Setter, O., Halperin, D. (2010). Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-Dimensional Space. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15775-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15775-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15774-5

  • Online ISBN: 978-3-642-15775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics