Skip to main content

Optimal Cover of Points by Disks in a Simple Polygon

  • Conference paper
Algorithms – ESA 2010 (ESA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6346))

Included in the following conference series:

Abstract

Let P be a simple polygon, and let Q be a set of points in P. We present an almost-linear time algorithm for computing a minimum cover of Q by disks that are contained in P. We generalize the algorithm above, so that it can compute a minimum cover of Q by homothets of any fixed compact convex set \(\mathcal{O}\) of constant description complexity that are contained in P. This improves previous results of Katz and Morgenstern [20]. We also consider the disk-cover problem when Q is contained in a (not too wide) annulus, and present a nearly linear algorithm for this case too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications. SIAM J. Comput. 29, 912–953 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite vc-dimension. Discrete Comput. Geom. 14(4), 469–479 (1995)

    Google Scholar 

  3. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I: Static-to-dynamic transformation. J. Algorithms 1(4), 301–358 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buneman, P.: A characterization of rigid circuit graphs. Discrete Math. 9, 205–212 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calinescu, G., Mandoiu, I.I., Wan, P.-J., Zelikovsky, A.: Selecting forwarding neighbors in wireless ad hoc networks. MONET 9(2), 101–111 (2004)

    Google Scholar 

  6. Carmi, P., Katz, M.J., Lev-Tov, N.: Covering points by unit disks of fixed location. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 644–655. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Chan, T.M.: A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries. J. ACM 57(3), Article 16 (2010)

    Google Scholar 

  8. Chew, L.P., Drysdale III., R.L.: Voronoi diagrams based on convex distance functions. In: SCG 1985: Proc. First Annual Sympos. Comput. Geom., pp. 235–244 (1985)

    Google Scholar 

  9. Chiang, Y., Tamassia, R.: Dynamic algorithms in computational geometry. Proc. IEEE 80(9), 1412–1434 (1992)

    Article  Google Scholar 

  10. Chin, F.Y.L., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. Discrete Comput. Geom. 21(3), 405–420 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1(2), 180–187 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gavril, F.: The intersection graphs of subtrees of a tree are exactly the chordal graphs. J. Combinat. Theory Ser. B 16, 47–56 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  14. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. In: Berge, C., Chvátal, V. (eds.) Topics on Perfect Graphs. Ann. Discrete Math., vol. 21, pp. 325–356. North-Holland, Amsterdam (1984)

    Chapter  Google Scholar 

  15. Halperin, D., Linhart, C.: The minimum enclosing disk with obstacles (1999) (Manuscript)

    Google Scholar 

  16. Halperin, D., Sharir, M., Goldberg, K.Y.: The 2-Center Problem with Obstacles. J. Algorithms 42(1), 109–134 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hsu, W.L., Tsai, K.H.: Linear time algorithms on circular-arc graphs. Inform. Process. Lett. 40(3), 123–129 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hurtado, F., Sacristán, V., Toussaint, G.: Some constrained minimax and maximin location problems. Studies in Locational Analysis 15, 17–35 (2000)

    Google Scholar 

  20. Katz, M.J., Morgenstern, G.: A scheme for computing minimum covers within simple regions. In: Dehne, F., et al. (eds.) 11th Int. Sympos. Algorithms and Data Structures (WADS). LNCS, vol. 5664, pp. 447–458. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cameras. In: 25th European Workshop on Comput. Geom, pp. 159–162 (2009)

    Google Scholar 

  22. Katz, M.J., Roisman, G.S.: On guarding the vertices of rectilinear domains. Comput. Geom. 39(3), 219–228 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom. 1(1), 59–71 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–34 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Leven, D., Sharir, M.: Planning a purely translational motion for a convex object in two–dimensional space using generalized Voronoi diagrams. Discrete Comput. Geom. 2, 9–31 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mehlhorn, K., Näher, S.: Dynamic fractional cascading. Algorithmica 5(2), 215–241 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Motwani, R., Raghunathan, A., Saran, H.: Perfect graphs and orthogonally convex covers. SIAM J. Discrete Math. 2(3), 371–392 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Motwani, R., Raghunathan, A., Saran, H.: Covering orthogonal polygons with star polygons: The perfect graph approach. J. Comput. Syst. Sci. 40(1), 19–48 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search. In: SCG 2009: Proc. 25th Annual Sympos. Comput. Geom, pp. 17–22 (2009)

    Google Scholar 

  30. Narayanappa, S., Vojtechovský, P.: An improved approximation factor for the unit disk covering problem. In: 18th Canadian Conf. on Comput. Geom, pp. 15–18 (2006)

    Google Scholar 

  31. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and their Geometric Applications. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  32. Worman, C., Keil, J.M.: Polygon decomposition and the orthogonal art gallery problem. Int. J. Comput. Geometry Appl. 17(2), 105–138 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaplan, H., Katz, M.J., Morgenstern, G., Sharir, M. (2010). Optimal Cover of Points by Disks in a Simple Polygon. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15775-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15775-2_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15774-5

  • Online ISBN: 978-3-642-15775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics