Abstract
We extend Clarkson’s framework by considering parameterized convex optimization problems over the unit simplex, that depend on one parameter. We provide a simple and efficient scheme for maintaining an ε-approximate solution (and a corresponding ε-coreset) along the entire parameter path. We prove correctness and optimality of the method. Practically relevant instances of the abstract parameterized optimization problem are for example regularization paths of support vector machines, multiple kernel learning, and minimum enclosing balls of moving points.
This work has been supported by the DFG under grant GI-711/3-1, by a Google Research Award, and by the Swiss National Science Foundation (SNF Project 20PA21-121957).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P., Har-Peled, S., Varadarajan, K.: Approximating extent measures of points. Journal of the ACM 51(4), 606–635 (2004)
Agarwal, P., Har-Peled, S., Yu, H.: Embeddings of surfaces, curves, and moving points in euclidean space. In: SCG 2007: Proceedings of the Twenty-third Annual Symposium on Computational Geometry (2007)
Bach, F., Lanckriet, G., Jordan, M.: Multiple kernel learning, conic duality, and the smo algorithm. In: ICML 2004: Proceedings of the Twenty-first International Conference on Machine Learning (2004)
Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Computational Geometry: Theory and Applications 40(1), 14–22 (2007)
Clarkson, K.L.: Coresets, sparse greedy approximation, and the frank-wolfe algorithm. In: SODA 2008: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2008)
Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimization. The Annals of Applied Statistics 1(2), 302–332 (2007)
Gärtner, B., Giesen, J., Jaggi, M.: An exponential lower bound on the complexity of regularization paths. arXiv, cs.LG (2009)
Gärtner, B., Giesen, J., Jaggi, M., Welsch, T.: A combinatorial algorithm to compute regularization paths. arXiv, cs.LG (2009)
Gärtner, B., Jaggi, M.: Coresets for polytope distance. In: SCG 2009: Proceedings of the 25th Annual Symposium on Computational Geometry (2009)
Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the support vector machine. The Journal of Machine Learning Research 5, 1391–1415 (2004)
Matousek, J., Gärtner, B.: Understanding and Using Linear Programming (Universitext). Springer, New York (2006)
Rosset, S., Zhu, J.: Piecewise linear regularized solution paths. Annals of Statistics 35(3), 1012–1030 (2007)
Wu, Z., Zhang, A., Li, C., Sudjianto, A.: Trace solution paths for svms via parametric quadratic programming. In: KDD 2008 DMMT Workshop (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giesen, J., Jaggi, M., Laue, S. (2010). Approximating Parameterized Convex Optimization Problems. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15775-2_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-15775-2_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15774-5
Online ISBN: 978-3-642-15775-2
eBook Packages: Computer ScienceComputer Science (R0)