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Finding Exogenous Variables in Data with Many

More Variables than Observations

Shohei Shimizu∗, Takashi Washio†, Aapo Hyvärinen‡and Seiya Imoto§

Abstract

Many statistical methods have been proposed to estimate causal mod-
els in classical situations with fewer variables than observations (p<n, p:
the number of variables and n: the number of observations). However,
modern datasets including gene expression data need high-dimensional
causal modeling in challenging situations with orders of magnitude more
variables than observations (p≫n). In this paper, we propose a method
to find exogenous variables in a linear non-Gaussian causal model, which
requires much smaller sample sizes than conventional methods and works
even when p≫n. The key idea is to identify which variables are exogenous
based on non-Gaussianity instead of estimating the entire structure of the
model. Exogenous variables work as triggers that activate a causal chain
in the model, and their identification leads to more efficient experimental
designs and better understanding of the causal mechanism. We present
experiments with artificial data and real-world gene expression data to
evaluate the method.

1 Introduction

Many empirical sciences aim to discover and understand causal mechanisms un-
derlying their objective systems such as natural phenomena and human social
behavior. An effective way to study causal relationships is to conduct a con-
trolled experiment. However, performing controlled experiments is often ethi-
cally impossible or too expensive in many fields including bioinformatics [1] and
neuroinformatics [2]. Thus, it is necessary and important to develop methods
for causal inference based on the data that do not come from such controlled
experiments.

Many methods have been proposed to estimate causal models in classical
situations with fewer variables than observations (p<n, p: the number of vari-
ables and n: the number of observations). A linear acyclic model that is a
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special case of Bayesian networks is typically used to analyze causal effects
between continuous variables [3, 4]. Estimation of the model commonly uses
covariance structure of data alone and in most cases cannot identify the full
structure (edge directions and connection strengths) of the model with no prior
knowledge on the structure [3, 4]. In [5], the authors proposed a non-Gaussian
variant of Bayesian networks called LiNGAM and showed that the full struc-
ture of a linear acyclic model is identifiable based on non-Gaussianity without
pre-specifying any edge directions between the variables, which is a significant
advantage over the conventional methods [3, 4].

However, most works in statistical causal inference including Bayesian net-
works have discussed classical situations with fewer variables than observations
(p<n). Modern datasets including gene expression data need high-dimensional
causal modeling in challenging situations with orders of magnitude more vari-
ables than observations (p≫n) [1, 2]. Here we consider situations in which p
is on the order of 1,000 or more, while n is around 50 to 100. For such high-
dimensional data, the previous methods are often computationally intractable
or statistically unreliable.

In this paper, we propose a method to find exogenous variables in a linear
non-Gaussian causal model, which requires much smaller sample sizes than con-
ventional methods and works even when p≫n. The key idea is to identify which
variables are exogenous instead of estimating the entire structure of the model.
The simpler task of finding exogenous variables than that of the entire model
structure would require fewer observations to work reliably. The new method
is closely related to a fairly recent statistical technique called independent com-
ponent analysis (ICA).

Exogenous variables work as triggers that activate a causal chain in the
model, and their identification leads to more efficient experimental designs of
practical interventions and better understanding of the causal mechanism. A
promising application of Bayesian networks for gene expression data is detection
of drug-target genes [1]. The new method proposed in this paper can be used
to find which genes a drug first affects and how it triggers the gene network.

The paper is structured as follows. We first review ICA and linear causal
models in Section 2. We then define a non-Gaussian causal model and propose
a new algorithm to find exogenous variables in Section 3. The performance of
the algorithm is evaluated by experiments on artificial data and real-world gene
expression data in Sections 4 and 5. Section 6 concludes the paper.

2 Background principles

2.1 Independent component analysis

Independent component analysis (ICA) [6] is a statistical technique originally
developed in signal processing. ICA model for a p-dimensional observed contin-
uous random vector x is defined as

x = As, (1)
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where s is a p-dimensional continuous random vector whose components si are
independent and non-Gaussian and are called independent components, and A

is a constant p×p invertible matrix. Without loss of generality, we assume si to

be of zero mean and unit variance. Let W̃=A−1. Then we have s=W̃x. It is
known that the matrix W̃ are identifiable up to permutation of the rows [7].

Let ŝ=Wx. A major estimation principle for W̃ is to find such W that
maximizes the sum of non-Gaussianity of estimated independent components
ŝi, which is known to be equivalent to maximize independence between the
estimates when the estimates are constrained to be uncorrelated [6]. In [8], the
author proposed a class of non-Gaussianity measures:

J(ŝi) = JG(wi) = [E{G(wT
i x)} − E{G(z)}]2, (2)

where wT
i is the i-th row of W and is constrained so that E(ŝ2i )=E{(wT

i x)
2}=1

due to the aforementioned assumption on unit variance of si, G is a nonlinear
and non-quadratic function and z is a Gaussian variable with zero mean and
unit variance. In practice, the expectations in Eq. (2) are replaced by their
sample means. In the rest of the paper, we say that a variable u is more non-
Gaussian than a variable v if J(u)>J(v). The author of [8] further proposed
an estimation method based on maximization of non-Gaussianity and proved a
theorem to show its (local) consistency:

Theorem 1 Assume that the input data x follows the ICA model in Eq. (1).
Assume that G is a sufficiently smooth even function. Then the set of local max-

ima of JG(w) under the constraint E{(wT
x)2}=1 includes the rows of W̃ for

which the corresponding independent components si satisfy the following condi-
tion E{sig(si)−g′(si)}[E{G(si)}−E{G(z)}]>0, where g(·) is the derivative of
G(·), and g′(·) is the derivative of g(·).

Note that any independent component si satisfying the condition in Theorem 1
is a local maximum of JG(w) but may not correspond to the global maximum.
Two conjectures are widely made [6], Conjecture 1: the condition in Theorem
1 is true for most reasonable choices of G and distributions of the si; Con-

jecture 2: the global maximum of JG(w) is one of the si for most reasonable
choices ofG and the distributions of the si. In particular, if G(s)=s4, Conjecture
1 is true for any continuous random variable whose moments exist and kurtosis
is non-zero [8], and it can also be proven that there are no spurious optima [9].
Then the global maximum should be one of the si, i.e., Conjecture 2 is true
as well. However, kurtosis often suffers from sensitivity to outliers. Therefore,
more robust functions such as G(s)=− exp(−s2/2) are widely used [6].

2.2 Linear acyclic causal models

Causal relationships between continuous observed variables xi (i = 1, · · · , p)
are typically assumed to be (i) linear and (ii) acyclic [3, 4]. For simplicity, we
assume that the variables xi are of zero mean. Let k(i) denote such a causal
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order of xi that no later variable causes any earlier variable. Then, the linear
causal relationship can be expressed as

xi :=
∑

k(j)<k(i)

bijxj + ei, (3)

where ei is an external influence associated with xi and is of zero mean. (iii)
The faithfulness [4] is typically assumed. In this context, the faithfulness implies
that correlations and partial correlations of variables xi are entailed by the graph
structure, i.e., the zero/non-zero status of bij , not by special parameter values
of bij . (iv) The external influences ei are assumed to be independent, which
implies there are no unobserved confounders [4].

We emphasize that xi is equal to ei if it is not influenced by any other
observed variable xj (j 6=i) inside the model, i.e., all the bij (j 6=i) are zeros.
That is, an external influence ei is observed as xi. Then the xi is called an
exogenous observed variable.1 Otherwise, ei is called an error. For example,
consider the model defined by

x1 = e1

x2 = 1.5x1 + e2

x3 = 0.8x1 − 1.3x2 + e3.

The x1 is equal to e1 since it is not influenced by either x2 or x3. The x1 is an
exogenous observed variable, and e2 and e3 are errors. Note that it is obvious
that there exists at least one exogenous observed variable xi(=ei) due to the
acyclicity and no unobserved confounder assumptions.

In many cases, we do not know anything about the causal relations between
the variables xi, and the causal effects bij are completely unknown. Most of
previous methods [3–5] that estimate the entire model structure, i.e., all the
causal effects bij , explicitly or implicitly assume fewer observed variables than
observations (p<n). Otherwise, the methods are often statistically unreliable.
In contrast, in the next section, we propose a new method to identify which ob-
served variables are exogenous instead of estimating the entire model structure
under the condition p≫n.

3 A new method to identify exogenous variables

In this section, we propose a new method to identify exogenous observed vari-
ables.

1An exogenous variable is defined as a variable that is not influenced by any other variable
inside the model. This definition does not require that it is equal to an external influence.
However, in the model (3), any exogenous variable is equal to an external influence due to the
acyclicity and no confounder assumptions.
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3.1 A new non-Gaussian linear acyclic causal model

We make two additional assumptions on the distributions of ei to the model (3)
and define a new non-Gaussian linear causal model. Let the observed variables
xi in a p-dimensional vector be x and external influences ei in a p-dimensional
vector e. Let a p×p matrix B consist of the causal effects bij where the diagonal
elements bii are all zeros. Then the model (3) is written in a matrix form as:

x = Bx+ e. (4)

Recall that the set of the external influences ei consist of both exogenous
observed variables and errors. To distinguish the exogenous variables and er-
rors, we make the following additional assumptions, Assumption 1: External
influences that correspond to exogenous observed variables are non-Gaussian;
Assumption 2: External influences that correspond to errors are non-Gaussian
but less non-Gaussian than the exogenous observed variables. That is, the model
(4)=the model (3)+Assumptions 1 and 2. The first assumption is made to ex-
plain why observed data are often considerably non-Gaussian in many fields [6].
The second assumption reflects two facts: i) in statistics, errors have been typ-
ically considered to arise as sums of a number of unobserved (non-Gaussian)
independent variables, which is why classical methods assume that errors are
Gaussian resorting to the central limit theorem; ii) the distinction between
Gaussian and non-Gaussian variables is artificial in practice, though. In reality,
many variables are not exactly Gaussian. Therefore, we allow the errors to be
strongly non-Gaussian as long as they are less non-Gaussian than exogenous
variables.2

The distinction between exogenous variables and errors leads to a very simple
estimation of exogenous variables proposed in the next subsections.

3.2 Identification of exogenous variables based on non-

Gaussianity and uncorrelatedness

We relate the linear non-Gaussian causal model (4) with ICA similarly to [5].
Let us solve the model (4) for x and then we have an ICA model represented
by Eq. (1) as follows

x = (I−B)−1
e = A′

e. (5)

Note that I−B is invertible since it can be permuted to be lower triangular due
to the acyclicity assumption if one knew causal orders k(i) [5] and its diagonal
elements are all non-zero (unity). In the next section we propose a new algorithm
to find exogenous variables xi(=ei) using the relation (5). In this section we
present two lemmas that ensures the validity of the algorithm.

2Actually, it is rather easy to show that our algorithm in Section 3.3 allows Gaussian errors
as well.
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Lemma 1 Assume that the input data x follows the model (4)3 and that Con-
jecture 2 (Section 2.1) is true. Let us denote by Vx the set of all the observed
variables xi. Then, the most non-Gaussian observed variable in Vx is exogenous:
J(xi) is maximum in Vx ⇒ xi=ei.

Proof Eq. (5) shows that the model (4) is an ICA model, where external
influences ei are independent components (ICs). The set of the external in-
fluences consist of exogenous observed variables and errors. Due to the model
assumption (Assumption 2 in Section 3.1), exogenous observed variables are
more non-Gaussian than errors. Therefore, the most non-Gaussian exogenous
observed variable is the most non-Gaussian IC. Next, according to Conjecture
2 that is here assumed to be true, the most non-Gaussian IC, i.e., the most
non-Gaussian exogenous observed variable, is the global maximum of the non-
Gaussianity measure J(wT

x)=JG(w) among such linear combinations of ob-
served variables wT

x with the constraint E{(wT
x)2}=1, which include all the

observed variables xi in Vx. Therefore, the most non-Gaussian observed variable
is the most non-Gaussian exogenous variable.

Lemma 2 Assume the assumptions of Lemma 1. Let us denote by E a strict
subset of exogenous observed variables so that it does not contain at least one
exogenous variable. Let us denote by UE the set of observed variables uncorre-
lated with any variable in E. Then the most non-Gaussian observed variable in
UE is exogenous: J(xi) is maximum in UE ⇒ xi=ei.

Proof First, the set Vx is the union of three disjoint sets: E, UE and CE ,
where CE is the set of observed variables in Vx\E correlated with a variable
in E. By definition, any variable in UE are not correlated with any variable in
E. Since the faithfulness is assumed, the zero correlations are only due to the
graph structure. Therefore, there is no directed path from any variable in E to
any variable in UE. Similarly, there is a directed path from each (exogenous)
variable in E to a variable in CE . Next, there can be no directed path from any
variable in CE to any variable in UE . Otherwise, there would be a directed path
from such a variable in E from which there is a directed path to a variable in CE

to a variable in UE through the variable in CE . Then, due to the faithfulness,
the variable in E must correlate with the variable in UE , which contradicts the
definition of UE .

To sum up, there is no directed path from any variable in E ∪ CE to any
variable in UE . Since any directed path from the external influence ei associated
with any variable xi in Vx must go through the xi, there is no directed path from
the external influence associated with any variable in E ∪CE to any variable in
UE . In other words, there can be directed paths from only the external influences
associated with any variables in UE to some variables in UE . Then, we again
have an ICA model: x̃=Ã′

ẽ, where x̃ and ẽ are vectors whose elements are the

3Namely, we make the following assumptions on the data generating process (i) linear-
ity, (ii) acyclicity, (iii) the faithfulness, (iv) no unobserved confounders (Section 2.2), and
Assumptions 1 and 2 (Section 3.1).
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variables in UE and corresponding external influences in e in Eq. (5), and Ã′

is the corresponding submatrix of A′ in Eq. (5). Recursively applying Lemma
1 shows that the most non-Gaussian variable in UE is exogenous.

To find uncorrelated variables, we simply use the ordinary Gaussianity-based
testing method [10] and control the false discovery rate [11] to 5% for multiplicity
of tests. Though non-parametric methods [10] is desirable for more rigorous
testing in the non-Gaussian setting, we used the Gaussian method that is more
computationally efficient and seems to work relatively well in our simulations.
Future work would address what is the better testing procedure taking non-
Gaussianity into account.

3.3 Exogenous generating variable finder: EggFinder

Based on the discussions in the previous subsection, we propose an algorithm
to find exogenous variables one by one, which we call EggFinder (ExoGenous
Generating variable Finder):

1. Given Vx, initialize E=∅, U
(1)
E =Vx, and m:=1.

2. Repeat until no variables xi are uncorrelated with exogenous variable can-

didates, i.e., U
(m)
E =∅:

(a) Find the most non-Gaussian variable xm in U
(m)
E :

xm = arg max
x∈U

(m)
E

J(x), (6)

where J is the non-Gaussianity measure in Eq. (2) with

G(x) = − exp(−x2/2). (7)

(b) Add the most non-Gaussian variable xm to E, that is, E=E∪{xm}.

(c) Let U
(m+1)
E to be the set of variables xi uncorrelated with any variable

in E, and m:=m+1.

In Step 2c, we use the Gaussianity-based testing method and control the
false discovery rate to 5%.

4 Experiments on artificial data

We performed two experiments with artificial data to evaluate the performance
of EggFinder when p≫n (Experiment 1) and its scalability (Experiment 2). The
experiments were conducted on a PC equipped with two 2.8 GHz Quad-Core
Intel Xeon processors and 2GB memory using Matlab 7.6.
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4.1 Experiment 1: Performance evaluation when p≫n

We studied the performance of EggFinder when p≫n under a linear non-Gaussian
acyclic model having a sparse graph structure and various degrees of error non-
Gaussianity. Many real-world networks such as gene networks are often consid-
ered to have scale-free graph structures. However, as far as we know, there is no
standard way to create a directed scale-free graph. Therefore, we first randomly
created a (conventional) sparse directed acyclic graph with p=1,000 variables
using a standard software Tetrad (http://www.phil.cmu.edu/projects/tetrad/).
The resulting graph contained 1,000 edges and ℓ=171 exogenous variables. We
randomly determined each element of the matrix B in the model (4) to follow
this graph structure and make the standard deviations of xi owing to parent
observed variables ranged in the interval [0.5, 1.5].

We generated non-Gaussian exogenous variables and errors as follows. We
randomly generated a non-Gaussian exogenous observed variable xi(=ei) that
was sub- or super-Gaussian with probability 50%.4 Next, for each error ei, we
randomly generated h (h=1, 3, 5 and 50) non-Gaussian variables having unit
variance in the same manner as for exogenous variables and subsequently took
the sum of them. We then scaled the sum to the standard deviation selected
similarly to the cases of exogenous variables and finally took it as an error ei.
A larger h (the number of non-Gaussian variables summed) would generate a
less non-Gaussian error due to the central limit theorem.

Finally, we randomly generated 1,000 datasets under each combination of
h and n (n=30, 60, 100 and 200) and fed the datasets to EggFinder. For
each combination, we computed percentages of datasets where all the top m
estimated variables were actually exogenous. In Figure 1, the relations between
the percentage and m are plotted for some representative conditions due to
the limited space. First, in all the conditions the percentages monotonically
decrease when m increases. Second, the percentages generally increase when
the sample size n increases. Similar changes of the percentages are observed
when the errors are less non-Gaussian. This is reasonable since a larger n
enables more accurate estimation of non-Gaussianity and correlation, and a
larger h generates data more consistent with the assumptions of the model (4).
In summary, EggFinder successfully finds a set of exogenous variables up to
more than m=10 in many practical conditions. However, EggFinder may not
find all the exogenous variables when p≫n, although it asymptotically finds all
the exogenous variables if all the assumptions made in Lemmas 1 and 2 hold.

Interestingly, EggFinder did not fail completely and identified a couple of
exogenous variables even for the h=1 condition where the distributional assump-
tion on errors was most likely to be violated. This is presumably because the
endogenous variables are sums of non-Gaussian errors and exogenous variables,

4We first generated a Gaussian variable zi with zero mean and unit variance and sub-
sequently transformed it to a non-Gaussian variable by si = sign(zi)|zi|qi . The nonlinear
exponent qi was randomly selected to lie in [0.5, 0.8] or [1.2, 2.0] with probability 50%. The
former gave a sub-Gaussian symmetric variable, and the latter a super-Gaussian symmetric
variable. Finally, the transformed variable si was scaled to the standard deviation randomly
selected in the interval [0.5, 1.5] and was taken as an exogenous variable.
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Figure 1: Percentages of datasets where all the top m estimated variables were
actually exogenous under (a) n=60; (b) n=200.

so due to the central limit theorem they are likely to be less non-Gaussian than
the exogenous variables, even if the errors and exogenous variables have the
same degree of non-Gaussianity.

4.2 Experiment 2: A scalability comparison

To evaluate the scalability of EggFinder, we made a comparison with LiNGAM
[5] that also utilizes non-Gaussianity but estimates the entire model structure.
LiNGAM is applicable to the conditions where the errors are more non-Gaussian
than exogenous variables unlike EggFinder. Once LiNGAM finds causal orders
k(i) of variables, edges having some possibility of zero effects are pruned using
the bootstrapping method [12]. Exogenous variables are determined as origins
of the causal chains.

We randomly created three directed acyclic graphs with p=50, 100 and 150
variables similarly to Experiment 1. The resulting numbers of exogenous vari-
ables ℓ were 14, 30 and 41 for the three graphs, respectively. For each graph,
we generated a matrix B and selected non-Gaussian distributions of external
influences in the same manner as Experiment 1. A rather strong degree of er-
ror non-Gaussianity under h=3 was tested to make the comparison as fair as
possible. Then we randomly generated 50 datasets with the sample size 500
under each p and fed the datasets to EggFinder and LiNGAM. In LiNGAM,
the resampling size for the bootstrapping was 5,000.

The medians of elapsed time, precision and recall are shown in Table 1.
Precision is the proportion of correctly found exogenous variables to estimated
exogenous variable candidates. Recall is the proportion of correctly found ex-
ogenous variables to all the actual exogenous variables. We see that EggFinder
was much faster than LiNGAM for all the conditions and scored much better
precision and recall than LiNGAM. The poor performance of LiNGAM is easily
understood since it had to estimate much more parameters (already 2,500 for
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Table 1: Medians of elapsed time, precision and recall

EggFinder LiNGAM

p ℓ Time Prec. Rec. Time Prec. Rec.
50 14 1.35 0.80 0.40 297.47 (41.16) 0.50 0.10
100 30 1.92 0.84 0.95 876.05 (29.67) 0.32 0.10
150 41 2.20 0.88 0.90 2,104.90 (76.46) 0.30 0.07

Median elapsed times of LiNGAM with (without) bootstrapping are shown.

p=50) than the sample size available (n=500).

5 Application to microarray gene expression data

To evaluate the practicability of EggFinder, we analyzed a real-world dataset
of gene microarray collected in an experiment on 60 mice [13]. The aim of the
experiment was to dose a chemical compound called 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) to mice and to see how it affects the gene expression levels
of the liver cells. The experiment was conducted with completely random sam-
pling of mice under every combination of two factors. The first factor was
the concentration of TCDD (0,1,3,10 and 30 microg/kg), and the second fac-
tor was the elapsed time since it was dosed (2, 4, 8 and 24 hours). The total
number of experimental conditions was 20. For each condition, gene expres-
sion levels of 45,101 genes in the liver cells of three mice were measured using
GeneChip microarrays. The total number of observations was 60. We used the
data normalized using the ‘Per cell’ method proposed by the authors of [13]
(http://www.biomedcentral.com/1471-2164/7/64).

As a standard preprocessing, we first conducted t-tests for the differences of
means [10] of the gene expression levels between the lowest and second lowest
concentration conditions of TCDD at 2 hours elapsed time. We then selected
1,000 genes that expressed the most significance since such genes were likely to
relevant to the TCDD dosing. Next, as mentioned in the previous paragraph,
the dataset consisted of 60 observations randomly sampled from 20 different
populations (three mice for each condition). However, the sample size three
was too small to analyze each population separately. Therefore, we made a
relatively common assumption in Bayesian networks [14] that the populations
might have different mean structures but had the same dependency structures.
Then it is expected to be fairly well validated to combine all the data into a
single dataset and analyze the dependency structures after computing the means
for each population and subtracting them. Thus, we obtained a data matrix
with the number of variables p=1,000 and the sample size n=60.

Then we applied EggFinder to the combined data and found 42 exogenous
variable candidates. We further computed bootstrap probabilities [15] to assess
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the statistical reliability. Here the bootstrap probability for a gene was defined
as the proportion of how many times the gene belonged to estimated sets of
exogenous variables to the resampling size 5,000. Since the sample size for each
population was quite small (three), the estimated bootstrapping probabilities
might not be very accurate. However, we thought that it was more useful to
examine them than not. Then 26 exogenous variable candidates (trigger genes)
were significantly often found with the significance level 5%.

First, we mention that it is hardly known which genes TCDD first affects
and how it triggers the gene network. This is why we applied EggFinder to
find promising trigger gene candidates of novel TCDD-induced pathways in the
gene network. Fortunately, some background knowledge in biology is available
to assess the performance of EggFinder. In mouse cells, TCDD binds to a
AhR (Aryl hydrocarbon Receptor). TCDD-bound AhR works as a transcription
factor and binds a specific short sequence called XRE (Xenobiotic Responsive-
Element). Thus, a possible way to find such genes that TCDD first affects
is to see if there are XREs in the DNA sequences of genes. However, since
XRE is a short sequence, it can be found in various positions in genome, even
in the DNA sequences of genes that TCDD does not first affect. Therefore,
simple sequence analysis based on sequence pattern matching tends to produce
a number of false positive genes that have irrelevant XREs for TCDD. Further,
TCDD could first affect genes having no XREs as well. Since EggFinder works
well in simulations (Section 4), it is expected that EggFinder finds better trigger
gene candidates having relevant XREs or possible other sequences for TCDD if
the model assumptions in Eq. (4) are fairly reasonable.

EggFinder found seven genes having XREs in their promoters (until 1,000
base pairs upstream from the transcription start sites) or their exons according
to a database called DRGdb-NIES.5 Two of the seven genes, 1422217_a_at
(CYP1A1) and 1428288_at, are known or conjectured in biology to be causally
related to TCDD. First, CYP1A1 is a well-known dioxin response gene and
assigned as dibenzo-p-dioxin metabolic process in a database called Gene On-
tology (http://www.geneontology.org/index.shtml). Second, 1428288_at is re-
lated to a progesterone receptor signaling pathway according to the Gene On-
tology database. Such a progesterone receptor of rats is known to be inhibited
by TCDD. Although there is not enough background knowledge about the other
five genes yet, the seven genes with XREs could be good candidates to inter-
vene on when conducting experiments to find trigger genes of TCDD-induced
pathways in the gene network.

Many real-world causal networks including gene networks are known to be
nonlinear and cyclic [1]. An important question for future research is to in-
vestigate how seriously this harms the performance of EggFinder that assumes
linearity and acyclicity and, eventually, how it can be solved or alleviated.

5http://www.nies.go.jp/health/drgdb/drgdb-top/TOP.htm
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6 Conclusion

We proposed a method to find exogenous variables in a linear non-Gaussian
causal model in data with orders of magnitude more variables than observations.
In the simulations the new method successfully found more exogenous variables
and was more computationally efficient than a previous method. This would
be an important first step for developing advanced causal analysis methods in
the challenging situations p≫n. Important topics for future research are i) how
the number of valid exogenous variable candidates is estimated well; ii) how we
could evaluate model fit; iii) how the model assumptions can be relaxed towards
more general nonlinear modeling.

References

[1] di Bernardo, D., Thompson, M., Gardner, T., Chobot, S., Eastwood, E.,
Wojtovich, A., Elliot, S., Schaus, S., Collins, J.: Chemogenomic profiling
on a genome-wide scale using reverse-engineered gene networks. Nature
Biotechnology 23 (2005) 377–383

[2] Londei, A., D’Ausilio, A., Basso, D., Belardinelli, M.O.: A new method
for detecting causality in fMRI data of cognitive processing. Cognitive
processing 7 (2006) 42–52

[3] Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge Uni-
versity Press (2000)

[4] Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search.
Springer Verlag (1993)

[5] Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-
gaussian acyclic model for causal discovery. J. Machine Learning Research
7 (2006) 2003–2030

[6] Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis.
Wiley, New York (2001)

[7] Comon, P.: Independent component analysis, a new concept? Signal
Processing 36 (1994) 62–83

[8] Hyvärinen, A.: Fast and robust fixed-point algorithms for independent
component analysis. IEEE Trans. on Neural Networks 10 (1999) 626–634

[9] Delfosse, N., Loubaton, P.: Adaptive blind separation of independent
sources: a deflation approach. Signal Processing 45 (1995) 59–83

[10] Lehmann, E., Romano, J.: Testing Statistical Hypotheses. Springer (2005)

[11] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practi-
cal and powerful approach to multiple testing. J. Royal Statistical Society:
Series B 57 (1995) 289–300

12



[12] Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman &
Hall, New York (1993)

[13] Kanno, J., Aisaki, K., Igarashi, K., Nakatsu, N., Ono, A., Kodama, Y.,
Nagao, T.: ”Per cell” normalization method for mRNA measurement by
quantitative PCR and microarrays. BMC Genomics 7 (2006)

[14] Muthén, B.O.: Latent variable modeling in heterogeneous populations.
Psychometrika 54 (1989) 557–585

[15] Felsenstein, J.: Confidence limits on phylogenies: an approach using the
bootstrap. Evolution 39 (1985) 783–791

13


	1 Introduction
	2 Background principles
	2.1 Independent component analysis
	2.2 Linear acyclic causal models

	3 A new method to identify exogenous variables
	3.1 A new non-Gaussian linear acyclic causal model
	3.2 Identification of exogenous variables based on non-Gaussianity and uncorrelatedness
	3.3 Exogenous generating variable finder: EggFinder

	4 Experiments on artificial data
	4.1 Experiment 1: Performance evaluation when pn
	4.2 Experiment 2: A scalability comparison

	5 Application to microarray gene expression data
	6 Conclusion

