Skip to main content

Designing Simple Nonlinear Filters Using Hysteresis of Single Recurrent Neurons for Acoustic Signal Recognition in Robots

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6352))

Included in the following conference series:

Abstract

In this article we exploit the discrete-time dynamics of a single neuron with self-connection to systematically design simple signal filters. Due to hysteresis effects and transient dynamics, this single neuron behaves as an adjustable low-pass filter for specific parameter configurations. Extending this neuro-module by two more recurrent neurons leads to versatile high- and band-pass filters. The approach presented here helps to understand how the dynamical properties of recurrent neural networks can be used for filter design. Furthermore, it gives guidance to a new way of implementing sensory preprocessing for acoustic signal recognition in autonomous robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dayhoff, J.E., Palmadesso, P.J., Richards, F.: Oscillation Responses in a Chaotic Recurrent Network. In: Recurrent Neural Networks: Design and Applications, pp. 153–177. CRC Press, Boca Raton (1999)

    Google Scholar 

  2. Steingrube, S., Timme, M., Wörgötter, F., Manoonpong, P.: Self-Organized Adaptation of a Simple Neural Circuit Enables Complex Robot Behaviour. Nature Physics 6, 224–230 (2010)

    Article  Google Scholar 

  3. Ziemke, T.: On Parts and Wholes of Adaptive Behavior: Functional Modularity and Dichronic Structure in Recurrent Neural Robot Controllers. In: 6th International Conference on Simulation of Adaptive Behavior, pp. 115–124 (2000)

    Google Scholar 

  4. Zegers, P., Sundareshan, M.K.: Trajectory Generation and Modulation using Dynamic Neural Networks. IEEE T. Neural Networ. 14(3), 520–533 (2003)

    Article  Google Scholar 

  5. Hülse, M., Wischmann, S., Pasemann, F.: Structure and Function of Evolved Neuro-Controllers for Autonomous Robots. Connect. Sci. 16(4), 249–266 (2004)

    Article  Google Scholar 

  6. Williams, R.J., Peng, J.: An Efficient Gradient–Based Algorithm for On–Line Training of Recurrent Network Trajectories. Neural Comput. 2(4), 490–501 (1990)

    Article  Google Scholar 

  7. Becerikli, Y.: Nonlinear Filtering Design using Dynamic Neural Networks with Fast Training. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 601–610. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Hagen, M.T., De Jesus, O., Schultz, R.: Training Recurrent Networks for Filtering and Control. In: Recurrent Neural Networks: Design and Applications, pp. 325–354. CRC Press, Boca Raton (1999)

    Google Scholar 

  9. Squartini, S., Cecchi, S., Rossini, M., Piazza, F.: Echo State Networks for Real-Time Audio Applications. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4493, pp. 731–740. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Beer, R.D.: The Dynamics of Active Categorical Perception in an Evolved Model Agent. Adapt. Behav. 11(4), 209–243 (2003)

    Article  Google Scholar 

  11. Pasemann, F.: Dynamics of a Single Model Neuron. Int. J. Bifurcat. Chaos 3(2), 271–278 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Manoonpong, P.: Neural Preprocessing and Control of Reactive Walking Machines: Towards Versatile Artificial Perception-Action Systems. In: Cognitive Technologies, Springer, Heidelberg (2007)

    Google Scholar 

  13. Kolodziejski, C., Porr, B., Wörgötter, F.: Mathematical Properties of Neuronal TD-Rules and Differential Hebbian Learning: A Comparison. Biol. Cybern. 98(3), 259–272 (2008)

    Article  MATH  Google Scholar 

  14. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-time Signal Processing. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  15. Haykin, S.: Neural Networks Expand SP’s Horizons. IEEE Signal Processing Magazine, 24–49 (1996)

    Google Scholar 

  16. Hanna, A.I., Mandic, D.P., Razaz, M.: A Normalised Backpropagation Learning Algorithm for Multilayer Feed-Forward Neural Adaptive Filters. In: The 2001 IEEE Workshop on Neural Networks for Signal Processing, pp. 63–72 (2001)

    Google Scholar 

  17. Uncini, A.: Audio Signal Processing by Neural Networks. Neurocomputing 55(3-4), 593–625 (2003)

    Article  Google Scholar 

  18. Mandic, D., Chambers, J.: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. Wiley, Chichester (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manoonpong, P., Pasemann, F., Kolodziejski, C., Wörgötter, F. (2010). Designing Simple Nonlinear Filters Using Hysteresis of Single Recurrent Neurons for Acoustic Signal Recognition in Robots. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15819-3_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15818-6

  • Online ISBN: 978-3-642-15819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics