Skip to main content

A Computational Neuromotor Model of the Role of Basal Ganglia and Hippocampus in Spatial Navigation

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Included in the following conference series:

Abstract

A computational model of the Basal Ganglia and the Hippocampus as key players in solving a navigation task is presented. The roles played by the above-mentioned neural substrates in navigation are demonstrated by an exploration task performed by a model rat in a simulated Morris Water Maze. To highlight the role of hippocampus in navigation, the agent is made to adopt a context-based navigation strategy. To demonstrate the role of BG in navigation, the agent is made to adopt a visual cue-based navigation strategy. The models are developed based on “actor-critic” architecture and trained using reinforcement learning. The above two models are integrated into a complete model which incorporates the above two forms of navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Redish, A.: Beyond the Cognitive Map, From Place Cells to Episodic Memory. MIT Press, Bradford Books (1999)

    Google Scholar 

  2. Lozano, R.C.: Spatial Learning and Navigation in the rat: A Biomimetic Model (2005)

    Google Scholar 

  3. Schultz, W.: Predictive Reward Signal of Dopamine Neurons. Journal of Neurophysiology 80, 1–27 (1998)

    Google Scholar 

  4. Foster, D.J., Morris, R.G.M., Dayan, P.: A Model of Hippocampally Dependent Navigation, Using the Temporal Difference Learning Rule. Hippocampus 10, 1–16 (2000)

    Article  Google Scholar 

  5. Devarajan, S., Prashanth, P.S., Chakravarthy, V.S.: The Role of the Basal Ganglia in Exploratory Behavior in a Model Based on Reinforcement Learning. In: Proc. International Conference on Neural Information Processing, pp. 70–77 (2004)

    Google Scholar 

  6. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map, preliminary evidence from unit activity in the freely moving rat. Brain Research 34, 171–175 (1971)

    Article  Google Scholar 

  7. Carpenter, G.A., Grossberg, S.: The Art of Adaptive Pattern-Recognition by A Self-Organizing Neural Network. Computer 21, 77–88 (1988)

    Article  Google Scholar 

  8. Devan, B.D., White, N.M.: Parallel information processing in the dorsal striatum: relation to hippocampal function. Journal of Neuroscience 19(7), 2789–2798 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sukumar, D., Chakravarthy, S. (2010). A Computational Neuromotor Model of the Role of Basal Ganglia and Hippocampus in Spatial Navigation. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics