Skip to main content

Evolutionary Strategies Used for the Mobile Robot Trajectory Tracking Control

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Included in the following conference series:

  • 1788 Accesses

Abstract

This paper addresses the Trajectory Tracking Problem for the Wheeled Mobile Robot, which is a nonlinear system. The trajectory tracking control problem is solved using the sliding mode control. In this paper the Evolution Strategy is investigated in order to obtain the best values for the sliding mode control law parameters. The performances of the control law with the optimum parameters are analyzed. The conclusions are based on the simulation results.

This work was supported by the Romanian High Education Scientific Research National Council (CNCSIS), under project PC ID-506.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Slotine, J., Li, W.: Applied Nonliner Control. Prentice Hall, New Jersey (1991)

    Google Scholar 

  2. Gao, W., Hung, J.: Variable structure control of nonlinear systems: A new approach. IEEE Transactions on Industrial Electronics 40, 45–55 (1993)

    Article  Google Scholar 

  3. Utkin, V., Young, K.: Methods for constructing discontinuity planes in multidimensional variable structure systems. Automation and Remote Control 39, 1466–1470 (1978)

    MATH  Google Scholar 

  4. Dorling, C., Zinober, A.: Two approaches to hyperplane design in multivariable variable structure control systems. Int. Journal Control 44, 65–82 (1986)

    Article  MATH  Google Scholar 

  5. Rechenberg, I.: Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

    Google Scholar 

  6. Schwefel, H.-P.: Numerische Optimierung von Computer-Modellen (PhD thesis) (1974); Reprinted by Birkhäuser (1977)

    Google Scholar 

  7. Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  8. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  9. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley, NY (1966)

    MATH  Google Scholar 

  10. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies - A comprehensive introduction. Natural Computing 1(1), 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Beyer, H.-G., Deb, K.: On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation 5(3), 250–270 (2001)

    Article  Google Scholar 

  12. Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, New York (1995)

    Google Scholar 

  13. Solea, R., Cernega, D.C.: Sliding Mode Control for Trajectory Tracking Problem - Performance Evaluation. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 865–874. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Lin, C.-L., Jan, H.-Y.: Application of evolution strategy in mixed H∞/H2 control for a linear brushless DC motor. Advanced Intelligent Mechatronics 1, 1–6 (2003) ISBN: 0-7803-7759-1

    Google Scholar 

  15. Iruthayarajan, M.W., Baskar, S.: Evolutionary algorithms based design of multivariable PID controller. Expert Syst. Appl. 36, 9159–9167 (2009)

    Article  Google Scholar 

  16. Richter, R., Hofmann, W.: Evolution Strategies Applied to Controls on a Two Axis Robot Source. In: Reusch, B. (ed.) Fuzzy Days 1997. LNCS, vol. 1226, pp. 434–443. Springer, Heidelberg (1997) ISBN:3-540-62868-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Serbencu, A., Serbencu, A.E., Cernega, D.C. (2010). Evolutionary Strategies Used for the Mobile Robot Trajectory Tracking Control. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics