Skip to main content

A Novel Topological Map of Place Cells for Autonomous Robots

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Included in the following conference series:

  • 1822 Accesses

Abstract

This paper presents a novel Topological Map of Place Cells model for autonomous robots. In such a model the robot acquires and stores perceptions using a basic memory provided by our proposed growing self-organizing map. Context sensitive cells aim to obtain Place Cells whose activation is dependent on a remembrance process that fires the recollection of stored memories from current robot perceptions. The map is a graph of interconnected and topologically organized Place Cells. The robots notion of localization is primary guided by the recollection process, while vestibular stimuli estimates and a historic of lastly visited places disambiguate conflicting simultaneously activated Place Cells. The results are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ranvaud, R., Nehmzow, U.: The map concept in animal navigation. In: Proc. of Royal Institute of Navigation conference (2005)

    Google Scholar 

  2. O’Keefe, J., Dostrovsky, J.: The Hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. Brain Research 34(1), 171–175 (1971)

    Google Scholar 

  3. Taube, J.S., Muller, R.U., Ranck, J.B.: Head-direction cells recorded from the post-subiculum in freely moving rats - II. Effects of Environmental Manipulations. J. of Neuroscience 10(2), 436–447 (1990)

    Google Scholar 

  4. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)

    Article  Google Scholar 

  5. McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.-B.: Path integration and the neural basis of the “cognitive map”. Nature Reviews Neuroscience 7, 663–678 (2006)

    Article  Google Scholar 

  6. Gruber, H.E., Voneche, J.J.: The essential Piaget. Basic Books, New York (1977)

    Google Scholar 

  7. Kuipers, B., Beeson, P., Modayil, J., Provost, J.: Bootstrap learning of foundational representations. Connection Science 18(2), 145–158 (2006)

    Article  Google Scholar 

  8. OGRE 3D graphics engine, http://www.ogre3d.org

  9. Scholl, B., Leslie, A.: Modularity, development and theory of mind. Mind and Language 14(1), 131–153 (1999)

    Article  Google Scholar 

  10. McClamrock, R.: Holism without tears: local and global effects in cognitive processes. Philosophy of Science 56, 258–274 (1989)

    Article  Google Scholar 

  11. Fodor, J.A.: The Mind Doesn’t Work That Way: The Scope and Limits of Computational Psycology. Theory & Psichology 13, 142–144 (2003)

    Article  Google Scholar 

  12. Kuipers, B.: The spatial semantic hierarchy. J. Artificial Intelligence 119, 191–233 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Vasudevan, S., Nguyen, V., Siegwart, R.: Towards a cognitive probabilistic representation of space for mobile robots. In: Proc. of IEEE Int. Conf. on Inf. Acquisition, ICIA 2006, pp. 353–359 (2006)

    Google Scholar 

  14. Weng, J.J., Hwang, W.-S.: From Neural Networks to the Brain: Autonomous Mental Development. IEEE Computational Intelligence Magazine, 15–31 (2006)

    Google Scholar 

  15. DalleMole, V.L., Araújo, A.F.R.: The growing Self-organizing surface Map. In: Proc. IEEE Int. Joint Conf. on Neural Networks, pp. 2061–2068 (2008)

    Google Scholar 

  16. DalleMole, V.L., Araújo, A.F.R.: Growing Self-Organizing Surface Map: learning a surface topology from a point cloud. Neural Computation 22(3), 689–729 (2010)

    Article  Google Scholar 

  17. Bailey, R.R., Srinath, M.D.: Orthogonal moment features for use with parametric and nonparametric classifiers. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(4), 389–399 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

DalleMole, V.L., Araújo, A.F.R. (2010). A Novel Topological Map of Place Cells for Autonomous Robots. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics