Skip to main content

Analyzing Classification Methods in Multi-label Tasks

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6354))

Included in the following conference series:

Abstract

Multi-label classification methods have been increasingly used in modern application, such as music categorization, functional genomics and semantic annotation of images. This paper presents a comparative analysis of some existing multi-label classification methods applied to different domains. The main aim of this analysis is to evaluate the performance of such methods in different tasks and using different evaluation metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining Multi-label Data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer, Heidelberg (2010)

    Google Scholar 

  2. Cerri, R., Silva, R.R., Carvalho, A.C.: Comparing Methods for Multilabel Classification of Proteins Using Machine Learning Techniques. In: Guimarães, K.S., Panchenko, A., Przytycka, T.M. (eds.) Advances in Bioinformatics and Computational Biology. LNCS, vol. 5676, pp. 109–120. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition 40, 2038–2048 (2007)

    Article  MATH  Google Scholar 

  4. Qi, G.J., Hua, X.S., Rui, Y., Tang, J., Mei, T., Zhang, H.J.: Correlative multi-label video annotation. In: 15th International Conference on Multimedia, New York, NY, USA (2007)

    Google Scholar 

  5. Clare, A., King, R.: Knowledge discovery in multi-label phenotype data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. Principles of Data Mining and Knowledge Discovery, p. 42. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Zhang, M., Zhou, Z.: Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization. IEEE T Knowl. & Data Eng. 18(10), 1338–1351 (2006)

    Article  Google Scholar 

  7. Tsoumakas, G., Friberg, R., Spyromitros-Xiou, E., Katakis, I., Vilcek, J.: Mulan software - java classes for ML classification, http://mlkd.csd.auth.gr/multilabel.html

  8. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of music into emotions. In: Proc. 9th Int. Conf. on Music Information Retrieval (2008)

    Google Scholar 

  9. Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite programming. J. of Mach. Learn. Res. 7, 1315–1338 (2007)

    MathSciNet  Google Scholar 

  10. McCallum, A.: Multi-label text classification with a mixture model trained by em. In: Proc of AAAI 1999 Workshop on Text Learning (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santos, A.M., Santana, L.E.A., Canuto, A.M. (2010). Analyzing Classification Methods in Multi-label Tasks. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15825-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15825-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15824-7

  • Online ISBN: 978-3-642-15825-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics