Abstract
Multi-label classification methods have been increasingly used in modern application, such as music categorization, functional genomics and semantic annotation of images. This paper presents a comparative analysis of some existing multi-label classification methods applied to different domains. The main aim of this analysis is to evaluate the performance of such methods in different tasks and using different evaluation metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining Multi-label Data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer, Heidelberg (2010)
Cerri, R., Silva, R.R., Carvalho, A.C.: Comparing Methods for Multilabel Classification of Proteins Using Machine Learning Techniques. In: Guimarães, K.S., Panchenko, A., Przytycka, T.M. (eds.) Advances in Bioinformatics and Computational Biology. LNCS, vol. 5676, pp. 109–120. Springer, Heidelberg (2009)
Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition 40, 2038–2048 (2007)
Qi, G.J., Hua, X.S., Rui, Y., Tang, J., Mei, T., Zhang, H.J.: Correlative multi-label video annotation. In: 15th International Conference on Multimedia, New York, NY, USA (2007)
Clare, A., King, R.: Knowledge discovery in multi-label phenotype data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. Principles of Data Mining and Knowledge Discovery, p. 42. Springer, Heidelberg (2001)
Zhang, M., Zhou, Z.: Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization. IEEE T Knowl. & Data Eng. 18(10), 1338–1351 (2006)
Tsoumakas, G., Friberg, R., Spyromitros-Xiou, E., Katakis, I., Vilcek, J.: Mulan software - java classes for ML classification, http://mlkd.csd.auth.gr/multilabel.html
Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of music into emotions. In: Proc. 9th Int. Conf. on Music Information Retrieval (2008)
Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite programming. J. of Mach. Learn. Res. 7, 1315–1338 (2007)
McCallum, A.: Multi-label text classification with a mixture model trained by em. In: Proc of AAAI 1999 Workshop on Text Learning (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Santos, A.M., Santana, L.E.A., Canuto, A.M. (2010). Analyzing Classification Methods in Multi-label Tasks. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15825-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-15825-4_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15824-7
Online ISBN: 978-3-642-15825-4
eBook Packages: Computer ScienceComputer Science (R0)