
ar
X

iv
:1

20
7.

44
55

v1
  [

cs
.N

E
]  

18
 J

ul
 2

01
2

First-improvement vs. Best-improvement
Local Optima Networks of NK Landscapes
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Abstract. This paper extends a recently proposed model for combinatorial land-
scapes:Local Optima Networks (LON), to incorporate a first-improvement (greedy-
ascent) hill-climbing algorithm, instead of a best-improvement (steepest-ascent)
one, for the definition and extraction of the basins of attraction of the landscape
optima. A statistical analysis comparing best and first improvement network mod-
els for a set ofNK landscapes, is presented and discussed. Our results suggest
structural differences between the two models with respectto both the network
connectivity, and the nature of the basins of attraction. The impact of these dif-
ferences in the behavior of search heuristics based on first and best improvement
local search is thoroughly discussed.

1 Introduction

The performance of heuristic search algorithms crucially depends on the structural as-
pects of the spaces being searched. An improved understanding of this dependency, can
facilitate the design and further successful application of these methods to solve hard
computational search problems. Local optima networks (LON) have been recently in-
troduced as a novel model of combinatorial landscapes [6,8,9]. This model allows the
use of complex network analysis techniques [5] in connection with the study of fitness
landscapes and problem difficulty in combinatorial optimisation. The model, inspired
by work in the physical sciences on energy surfaces [3], is based on the idea of com-
pressing the information given by the whole problem configuration space into a smaller
mathematical object which is the graph having as vertices the optima configurations of
the problem and as edges the possible weighted transitions between these optima (see
Figure 1). This characterization of landscapes as networkshas brought new insights
into the global structure of the landscapes studied, particularly into the distribution of
their local optima. Moreover, some network features have been found to correlate and
suggest explanations for search difficulty on the studied domains. The study of local
optima networks has also revealed new properties of the basins of attraction.

The current methodology for extracting LONs requires the exhaustive exploration
of the search space, and the use of a best-improvement (steepest-ascent) local search
algorithm from each configuration. In this paper, we are interested in exploring how the
network structure and features of a given landscape will change, if a first-improvement
(greedy-ascent) local search algorithm is used instead forextracting the basins and tran-
sition probabilities. This is apparently simple but, in reality, requires a careful redefi-
nition of the concept of a basin of attraction. The new notions will be presented in the
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Fig. 1. Visualisation of the weighted local optima network of a small NK landscape
(N = 6, K = 2). The nodes correspond to the local optima basins (with the diameter
indicating the size of basins, and the label ”fit”, the fitnessof the local optima). The
edges depict the transition probabilities between basins as defined in the text.

next section. Following previous work [8,9], we use the well-known family of NK
landscapes [4] as an example, as it allows the exploration oflandscapes of tunable
ruggedness and search difficulty.

The article is structured as follows. Section 2, includes the relevant definitions and
algorithms for extracting the LONs. Section 3 describes theexperimental design, and
reports the analysis of the extracted networks, including astudy of both their basic
features and connectivity, and the nature of the basins of attraction of the local optima.
Finally, section 4 discusses our main findings and suggest directions for future work.

2 Definitions and algorithms

A Fitness landscape [7] is a triplet(S, V, f) whereS is a set of potential solutions i.e.
a search space,V : S −→ 2S , a neighborhood structure, is a function that assigns to
everys ∈ S a set of neighborsV (s), andf : S −→ R is a fitness function that can be
pictured as theheightof the corresponding solutions. In our study, the search space is
composed by binary strings of lengthN , therefore its size is2N . The neighborhood is
defined by the minimum possible move on a binary search space,that is, the 1-move or
bit-flip operation. In consequence, for any given strings of lengthN , the neighborhood
size is|V (s)| = N . TheHillClimbing algorithm to determine the local optima and
therefore define the basins of attraction, is given in Algorithm 1. It defines a mapping
from the search spaceS to the set of locally optimal solutionsS∗.

First-improvement differs from best-improvement local search, in the way of select-
ing the next neighbor in the search process, which is relatedwith the so-calledpivot-
rule. In best-improvement, the entire neighborhood is exploredand the best solution is



Algorithm 1 Best-improvement (left) and first-improvement (right) algorithms.

Choose initial solutions ∈ S
repeat

chooses
′

∈ V (s), such thatf(s
′

) =
maxx∈V (s)f(x)

if f(s) < f(s
′

) then
s← s

′

end if
until s is a Local optimum

Choose initial solutions ∈ S
repeat

chooses
′

∈ V (s) using a predefined ran-
dom ordering

if f(s) < f(s
′

) then
s← s

′

end if
until s is a Local optimum

returned, whereas in first-improvement, a solution is selected uniformly at random from
the neighborhood (see Algorithm 1).

First, let us define the standard notion of a local optimum.
Local optimum (LO). A local optimum, which is taken to be a maximum here, is

a solutions∗ such that∀s ∈ V (s), f(s) ≤ f(s∗).
Let us denote byh, the stochastic operator that associates to each solutions, the

solution obtained after applying one of the hill-climbing algorithms (see Algorithms
1) for a sufficiently large number of iterations to converge to aLO. The size of the
landscape is finite, so we can denote byLO1, LO2, LO3 . . . , LOp, the local optima.
TheseLOs are the vertices of thelocal optima network.

Now, we introduce the concept of basin of attraction to definethe edges and weights
of our network model. Note that for each solutions, there is a probability thath(s) =
LOi. We denotepi(s) the probabilityP (h(s) = LOi). We have that for:

Best-improvement: for a given solutions, there is a (single) local optimum, and thus
ani, such thatpi(s) = 1 and∀j 6= i, pj(s) = 0.

First-improvement: for a given solutions, it is possible to have several local optima,
and thus severali1, i2, . . . , im, such thatpi1(s) > 0, pi2(s) > 0, . . . , pim(s) > 0.

For both models, we have, for each solutions ∈ S,
∑n

i=1
pi(s) = 1.

Following the definition of the LON model in neutral fitness landscapes [9], we
have that:

Basin of attraction. The basin of attraction of the local optimumi is the setbi =
{s ∈ S | pi(s) > 0}. This definition is consistent with our previous definition [8] for
the best-improvement case.

The size of the basins of attraction can now be defined as follows:
Size of a basin of attraction.The size of the basin of attraction of a local optimum

i is
∑

s∈S
pi(s).

Edge weight.We first reproduce the definition of edge weights for the non-neutral
landscape, and best-improvement hill-climbing [8]: For each solutionss and s

′

, let
p(s → s

′

) denote the probability thats
′

is a neighbor ofs, i.e. s
′

∈ V (s). Therefore,
we define below:p(s → bj), the probability that a configurations ∈ S has a neighbor



in a basinbj , andp(bi → bj), the total probability of going from basinbi to basinbj,
which is as the average over alls ∈ bi of the transition probabilities to solutionss

′

∈ bj
(where♯bi is the size of the basinbi) :

p(s → bj) =
∑

s
′
∈bj

p(s → s
′

), p(bi → bj) =
1

♯bi

∑

s∈bi

p(s → bj)

For first and best improvement hill-climbing, we have definedthe probabilitypi(s)
that a solutions belongs to a basini. We can, therefore, modify the previous definitions
to consider both types of network models:

p(s → bj) =
∑

s
′
∈bj

p(s → s
′

)pj(s
′

), p(bi → bj) =
1

♯bi

∑

s∈bi

pi(s)p(s → bj)

In the best-improvement, we havepk(s) = 1 for all the configurations in the basinbk.
Therefore, the definition of weights for the best-improvement case is consistent with
the previous definition. Now, we are in a position to define theweighted local optima
network:

Local optima network. The weighted local optima networkGw = (N,E) is the
graph where the nodes are the local optima, and there is an edge eij ∈ E, with weight
wij = p(bi → bj), between two nodesi andj if p(bi → bj) > 0.

According to our definition of edge weights,wij = p(bi → bj) may be different
thanwji = p(bj → bi). Thus, two weights are needed in general, and we have an
oriented transition graph.

3 Analysis of the local optima networks

The NK family of landscapes [4] is a problem-independent model forconstructing
multimodal landscapes that can gradually be tuned from smooth to rugged. In the
model,N refers to the number of (binary) genes in the genotype (i.e. the string length)
andK to the number of genes that influence a particular gene. By increasing the value
of K from 0 toN−1,NK landscapes can be tuned from smooth to rugged. TheK vari-
ables that form the context of the fitness contribution of genesi can be chosen according
to different models. The two most widely studied models are therandom neighborhood
model, where theK variables are chosen randomly according to a uniform distribu-
tion among then − 1 variables other thansi, and theadjacent neighborhoodmodel,
in which theK variables that are closest tosi in a total orderings1, s2, . . . , sn (using
periodic boundaries). No significant differences between the two models were found in
[4] in terms of the landscape global properties, such as meannumber of local optima
or autocorrelation length. Similarly, our preliminary studies on the characteristics of
theNK landscape optima networks, did not show noticeable differences between the
two neighborhood models. Therefore, we conducted our full study on the more general
random model.



In order to minimize the influence of the random creation of landscapes, we consid-
ered 30 different and independent landscapes for each combination ofN andK param-
eter values. In all cases, the measures reported, are the average of these 30 landscapes.
The study considered landscapes withN ∈ {14, 16} andK ∈ {2, 4, . . . , N−1}, which
are the largest possible parameter combinations that allowthe exhaustive extraction of
local optima networks. Both best-improvement and first-improvement local optima net-
works (b-LON and f-LON, respectively) were extracted and analyzed.

3.1 Network features and connectivity

This section reports the most commonly used features to characterise complex net-
works, in both the f-LON and b-LON models.

Table 1.NK landscapes network properties. Values are averages over 30random in-
stances, standard deviations are shown as subscripts.nv andne represent the number
of vertexes and edges,̄Cw, the mean weighted clustering coefficient.Ȳ represent the
mean disparity coefficient,̄d the mean path length, and̄dbest the mean path length to
the global optimum (see text for definitions).

K n̄v n̄e/n̄
2
v C̄w Ȳ d̄ d̄best

N = 14

both b-LON f-LON b-LON b-LON f-LON b-LON f-LON b-LON f-LON
2 146 0.89 1.00 0.980.015 0.3670.0934 0.1720.0977 76194 2818 136 106
4 7010 0.64 1.00 0.920.013 0.1480.0101 0.0480.0079 896 867 268 2311
6 18415 0.37 1.00 0.790.014 0.0930.0031 0.0250.0017 1193 1406 449 4916
8 35022 0.21 1.00 0.660.015 0.0700.0020 0.0170.0008 1332 1834 6710 9520
10 58522 0.12 1.00 0.540.009 0.0580.0010 0.0140.0004 1391 2183 8411 14126
12 89622 0.07 1.00 0.460.004 0.0520.0006 0.0130.0002 1401 2472 10211 19642
13 1, 08520 0.06 1.00 0.420.004 0.0500.0006 0.0130.0002 1391 2591 1049 21838

N = 16

both b-LON f-LON b-LON b-LON f-LON b-LON f-LON b-LON f-LON
2 3315 0.81 1.00 0.960.024 0.3260.0579 0.1100.0590 5614 3911 165 125
4 17833 0.60 1.00 0.920.017 0.1370.0111 0.0330.0064 1268 12713 359 3213
6 46029 0.32 1.00 0.790.015 0.0840.0028 0.0160.0014 1703 2158 6015 7023
8 89033 0.17 1.00 0.650.010 0.0620.0011 0.0110.0004 1942 2825 8313 11826
10 1, 47034 0.09 1.00 0.530.007 0.0500.0006 0.0090.0002 2061 3403 11215 18330
12 2, 25432 0.05 1.00 0.440.003 0.0430.0003 0.0080.0001 2071 3802 14316 27148
14 3, 26429 0.03 1.00 0.380.002 0.0400.0003 0.0080.0001 2031 4111 15813 35151
15 3, 86833 0.02 1.00 0.350.002 0.0390.0004 0.0080.0000 2001 4231 16213 39187

Number of nodes and edges: The2nd column of Table 1, reports the number of
nodes (local optima),nv, for all the studied landscapes. The b-LONs and f-LONs have
the same local optima, since both local search algorithms, although using a different
pivot-rule, are based on the bit-flip neighborhood. The networks, however, have a dif-
ferent number of edges, as can be appreciated in the3rd and4th columns of Table 1,



which report the number of edges normalized by the square of the number of nodes.
Clearly, the number of edges is much larger for the f-LONs. This number is always the
square of the number of nodes, which indicates that the f-LONs are complete graphs. It
is worth noticing, however, that many of the edges have very low weights (see Figure
3). For the b-LON model, the number of edges decrease steadily with increasing values
of K.

Clustering coefficient or transitivity : Theclustering coefficientof a network is the
average probability that that two neighbors of a given node are also neighbors of each
other. In the language of social networks, the friend of yourfriend is likely also to be
your friend. The standard clustering coefficient [5] does not consider weighted edges.
We thus used theweighted clusteringmeasure proposed by [1]. The5th column of table
1 lists the average coefficients of the b-LONs for allN andK. It is apparent that the
clustering coefficients decrease regularly with increasingK, which indicates that either
there are less transitions between neighboring basins for highK, and/or the transitions
are less likely to occur. On the other hand, the f-LONs correspond to complete networks;
the calculation of the clustering coefficients revealed that ∀i, cw(i) = 1.0 (not shown
in the Table). Therefore, the f-LON is densely connected forall values ofK.

Disparity : Thedisparitymeasure proposed in [1],Y (i), gauges the heterogeneity
of the contributions of the edges of nodei to the total weight. Columns6th and7th

in Table 1 depict the disparity coefficients, for both network models, respectively. The
heterogeneity decreases with increasing values ofK. This reflects that with high values
of K, the transitions to other basins tend to become equally likely, an indication of a
more random structure (and thus a difficult search). It can also be seen that the weights
for the f-LON model are less heterogenous (more uniform) than for the b-LON one.

Shortest path length: Another standard metric to characterize the structure of net-
works is the shortest path length (number of link hobs) between two nodes on the net-
work. In order to compute this measure on the optima network of a given landscape,
we considered the expected number of bit-flip mutations to pass from one basin to the
other. This expected number can be computed by considering the inverse of the tran-
sition probabilities between basins. More formally, the distance between two nodes is
defined bydij = 1/wij wherewij = p(bi → bj). Now, we can define the length
of a path between two nodes as being the sum of these distancesalong the edges that
connect the respective basins. Columns9th and7th in Table 1 report this measure on
the two network models. In both cases, the shortest path increases withK, however,
for the b-LON the growth stagnates for largerK values. The paths are considerably
longer for the f-LON, with the exception of the lowest valuesof K. Some paths are
more relevant from the point of view of a stochastic local search algorithm following
a trajectory over the maxima network. Therefore, columns10th and11th in Table 1,
report the shortest path length to the global optimum from all the other optima in the
landscape. The trend is clear, the path lengths to the optimum increase steadily with
increasingK, and similarly, the first-improvement network shows longerpaths. This
suggest that a larger number of hops will be needed to find the global optimum when a
first-improvement local search is used. We must consider, however, that the number of
evaluations needed to explore a basin, would beN times lower for first-improvement
than for best-improvement.



Outgoing weight distribution : The standard topological characterization of (un-
weighed) networks is obtained by its degree distribution. The degree of a node is defined
as its number of neighbours, and the degree distribution of anetwork is the distribution
over the frequencies of different degrees over all nodes in the network. For weighted
networks, a characterization of weights is obtained by theconnectivity and weight dis-
tributionspin(w) andpout(w) that any given edge has incoming or outgoing weightw.
In our study, for each nodei, the sum of outgoing edge weights is equal to1 as they
represent transition probabilities. So, an important measure is the weightwii of self-
connecting edges (remaining in the same node). We have the relation:wii + si = 1.

Figure 2, reports the outgoing weight distributionspout(w) (in log-scale on x-axis)
of both the f-LON and b-LON networks on a selected landscape with K = 6, and
N = 16. One can see that the weights, i.e. the transition probabilities to neighboring
basins are small. The distributions are far from uniform or Poissonian, they are not close
to power-laws either. We couldn’t find a simple fit to the curves such as stretched ex-
ponentials or exponentially truncated power laws. It can beseen that the distributions
differ for the first and best LON models. There is a larger number of edges with low
weights for the f-LONs than for the b-LONs. Thus, even thoughthe f-LONs are more
densely connected (indeed they are complete graphs) many ofthe edges have very low
weights. Figure 3 (left), shows the averages, over all the nodes in the network, of the
weightswii (i.e. the probabilities of remaining in the same basin aftera bit-flip mu-
tation) forN = 16 and all theK values. Notice that, for both network models, the
weightswii are much higher when compared to thosewij with j 6= i (see Fig. 3 right).
Thewii are much lower for the first than for the best LON. In particular, in the b-LON,
for K = 2, 50% of the random bit-flip mutations will produce a solution within the
same basin of attraction, whereas this figure is of less than20% in the f-LON. Indeed,
in this case, forK greater than 4, the probabilities of remaining in the same basin fall
below10%, which suggests that escaping from local optima would be easier for a first-
improvement local searcher.
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Fig. 3. Averages ofwii weights (left), and averages ofwij with j 6= i weights (right),
for landscapes withN = 16 and all theK values.

3.2 Basins of attraction features

The previous section studied and compared the basic networkfeatures and connectivity
of the first and best LONs. The exhaustive extraction of the networks, also produced
detailed information of the corresponding basins of attraction. Therefore, this section
discusses the most relevant of the basin’s features.

Size of the global optimum basin: When exploring the average size of the global
optimum basin of the f-LONs, we found that they decrease exponentially with increas-
ing ruggedness (K values). This is consistent with the results for the b-LON onthese
landscapes [8]. Moreover, the basins sizes for both networks are similar, with those of
f-LON being slightly smaller. This may suggest that for the the same number of runs,
the success rate of a first-improvement heuristic would be lower. One needs to consider,
however, that the number of evaluations per run is smaller inthis case.

Basin sizes of the two network models: A comparative study of the basin sizes
of the two network models revealed that they are highly correlated. Only the small-
est basins of the f-LON model are larger in size when comparedto the corresponding
smallest basins in the b-LON model.

Basin size and fitness of local optima: Fig. 4 reports the correlation coefficients
ρ between the networks’ basin sizes and their fitness, for boththe first and best LONs,
and landscapes withN = 16 and all theK values. It can be observed that there is a
strong correlation between fitness and basin sizes for both types of networks. Indeed,
for K ≤ 10, the correlation is overρ > 0.8. For rugged landscapes,K > 8, the f-LON
shows reduced and decreasing coefficients as compared to theb-LON.

Number of basins per solution on the f-LONs: According to the definition of
basins (see section 2), for the f-LON, a given solution may belong to a set of basins. Fig.
5 (a) shows the average number of basins to which a solution belongs (i.e.♯{i | pi(s) >
0}). It can be observed that forN = 16 andK = 4, a solution belongs to nearly70% of
the total number of basins, whereas forK = 14, a solution belongs to less than30% of
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the total number of basins. On average, a solution belongs toless basins for highK than
for low K. An exploration of the average number of basin per solution,according to the
solution fitness value (Fig. 5 (b), forN = 16) reveals a striking difference. While low
fitness solutions belong to nearly all basins, high fitness solutions belong to at most one
basin. The figure suggest the presence of a phase transition,in which the threshold of
the transition is lower for highK than for lowK. This suggests that the structure of the
f-LON network for solutions with high fitness, resembles that of the b-LON, whereas
the topology is different with respect to solutions with lowfitness.
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4 Discussion

We have extended the recently proposedLocal Optima Network (LON)model to ana-
lyze the structural differences between first and best improvement local search, in terms
of the local optima network connectivity and the nature of the corresponding basins of
attraction. The results of the analysis, on a set ofNK landscapes can be summarized
as follows. The impact of landscape ruggedness (K value) on the network features is
similar for both models. First-improvement induces a densely connected network (in-
deed a complete network), while this is not the case on the best-improvement model.
However, many of the edges in the f-LON networks have very lowweights. In par-
ticular, the self-connections (i.e. the probabilities of remaining in the same basin after
a bit-flip mutation), are much smaller in the f-LON than in theb-LON model, which
suggests that escaping from local optima would be easier fora first-improvement lo-
cal searcher. The path lengths between local optima, and between any optima and the
global optimum, are generally larger in f-LON than in b-LON networks. We must con-
sider, however, that the number of evaluations needed to explore a basin, would beN
times lower for first-improvement than for best-improvement. We, therefore, suggest
that first-improvement is a better heuristic for exploringNK landscapes. Our prelimi-
nary empirical results support this insight, a detailed account of them will be presented
elsewhere due to space restrictions. Most of our work on the local optima model has
been based on binary spaces andNK landscapes. However, we have recently started the
exploration of permutation search spaces, specifically theQuadratic Assignment Prob-
lem (QAP) [2], which opens up the possibility of analyzing other permutation based
problems such as the traveling salesman and the permutationflow shop problems. Our
current definition of transition probabilities, although very informative, produces highly
connected networks, which are not easy to study. Therefore,we are currently consid-
ering alternative definitions and threshold values for the connectivity. Finally, although
the local optima network model is still under development, we argue that it offers an
alternative view of combinatorial fitness landscapes, which can potentially contribute
to both our understanding of problem difficulty, and the design of effective heuristic
search algorithms.
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