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Abstract. This paper extends a recently proposed model for combiaatand-
scapest.ocal Optima Networks (LONJ)o incorporate a first-improvement (greedy-
ascent) hill-climbing algorithm, instead of a best-impment (steepest-ascent)
one, for the definition and extraction of the basins of atioacof the landscape
optima. A statistical analysis comparing best and first mapment network mod-

els for a set ofV K landscapes, is presented and discussed. Our results sugges
structural differences between the two models with resfgebbth the network
connectivity, and the nature of the basins of attractiore ifhpact of these dif-
ferences in the behavior of search heuristics based on fidgshest improvement
local search is thoroughly discussed.

1 Introduction

The performance of heuristic search algorithms cruciadlgehds on the structural as-
pects of the spaces being searched. An improved undenstpoitthis dependency, can
facilitate the design and further successful applicatibthese methods to solve hard
computational search problems. Local optima networks (J.&&Ve been recently in-
troduced as a novel model of combinatorial landscapesde,8his model allows the
use of complex network analysis techniqués [5] in conneatiith the study of fitness
landscapes and problem difficulty in combinatorial optatisn. The model, inspired
by work in the physical sciences on energy surfaces [3], setha@n the idea of com-
pressing the information given by the whole problem configion space into a smaller
mathematical object which is the graph having as verticegtima configurations of
the problem and as edges the possible weighted transitetmgebn these optima (see
Figure[1). This characterization of landscapes as netwaaksbrought new insights
into the global structure of the landscapes studied, paatity into the distribution of
their local optima. Moreover, some network features hawenldeund to correlate and
suggest explanations for search difficulty on the studiesialos. The study of local
optima networks has also revealed new properties of the®asattraction.

The current methodology for extracting LONs requires thieagstive exploration
of the search space, and the use of a best-improvementégstezgrent) local search
algorithm from each configuration. In this paper, we arerggged in exploring how the
network structure and features of a given landscape wilhgbaif a first-improvement
(greedy-ascent) local search algorithm is used insteagktoacting the basins and tran-
sition probabilities. This is apparently simple but, inligarequires a careful redefi-
nition of the concept of a basin of attraction. The new ndiaiill be presented in the
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Fig. 1. Visualisation of the weighted local optima network of a dnTélK” landscape
(N = 6, K = 2). The nodes correspond to the local optima basins (with if@eter
indicating the size of basins, and the label "fit", the fithe$she local optima). The
edges depict the transition probabilities between basirtefined in the text.

next section. Following previous workl[8,9], we use the welbwn family of NK
landscaped 4] as an example, as it allows the exploratidarafscapes of tunable
ruggedness and search difficulty.

The article is structured as follows. Sectldn 2, includesréievant definitions and
algorithms for extracting the LONSs. Sectibh 3 describesekgerimental design, and
reports the analysis of the extracted networks, includirggualy of both their basic
features and connectivity, and the nature of the basingmitsion of the local optima.
Finally, sectioi ¥ discusses our main findings and suggesttibns for future work.

2 Definitions and algorithms

A Fitness landscapégl[7] is a triple$, V, f) whereS is a set of potential solutions i.e.
a search spacé; : S — 2°, a neighborhood structure, is a function that assigns to
everys € S a set of neighbor¥ (s), andf : S — R is a fithess function that can be
pictured as théeightof the corresponding solutions. In our study, the searchesm
composed by binary strings of lengi¥, therefore its size i8"V. The neighborhood is
defined by the minimum possible move on a binary search sgiaatas, the 1-move or
bit-flip operation. In consequence, for any given striraf length N, the neighborhood
size is|V(s)| = N. The HillClimbing algorithm to determine the local optima and
therefore define the basins of attraction, is given in Algpon[d. It defines a mapping
from the search spaceto the set of locally optimal solutionS*.
First-improvement differs from best-improvement loca®d, in the way of select-
ing the next neighbor in the search process, which is relatddthe so-callecivot-
rule. In best-improvement, the entire neighborhood is explaratithe best solution is



Algorithm 1 Best-improvement (left) and first-improvement (right)@iighms.

Choose initial solutios € S Choose initial solutiors € S
repeat repeat
chooses’ € V(s), such thatf(s') = chooses’ € V(s) using a predefined ran-
Mat ey (s)f(x) dom ordering
if f(s) < f(s') then )
s s if f(s) </f(s ) then
end if S8
until sis a Local optimum end if

until s is a Local optimum

returned, whereas in first-improvement, a solution is $eteeniformly at random from
the neighborhood (see Algorithid 1).

First, let us define the standard notion of a local optimum.

Local optimum (LO). A local optimum, which is taken to be a maximum here, is
a solutions* such that's € V (s), f(s) < f(s*).

Let us denote by:, the stochastic operator that associates to each solsitithre
solution obtained after applying one of the hill-climbinig@ithms (see Algorithms
[I) for a sufficiently large number of iterations to convergeatZO. The size of the
landscape is finite, so we can denote/by;, LO2, LOs ..., LO,, the local optima.
TheseLOs are the vertices of thiecal optima network

Now, we introduce the concept of basin of attraction to defieeedges and weights
of our network model. Note that for each solutigrthere is a probability that(s) =
LO;. We denotey; (s) the probabilityP(h(s) = LO;). We have that for:

Best-improvement: for a given solutiors, there is a (single) local optimum, and thus
ani, such thap;(s) = 1 andVj # i, p;(s) = 0.

First-improvement: for a given solutions, it is possible to have several local optima,
and thus several, is, . . ., i, sSuch thap;, (s) > 0,p;,(s) > 0,...,p;, (s) > 0.

For both models, we have, for each solutioa S, >, pi(s) = 1.

Following the definition of the LON model in neutral fitnessidscapes 9], we
have that:

Basin of attraction. The basin of attraction of the local optimunis the seth; =
{s € S| pi(s) > 0}. This definition is consistent with our previous definiti@j for
the best-improvement case.

The size of the basins of attraction can now be defined asafsilo
Size of a basin of attraction.The size of the basin of attraction of a local optimum

iis ) cspi(s).

Edge weight.We first reproduce the definition of edge weights for the nentral
landscape, and best-improvement hill-climbifg [8]: Focteaolutionss and s’ let
p(s — s) denote the probability thaf is a neighbor of, i.e.s" € V (s). Therefore,
we define belowp(s — b;), the probability that a configuratione S has a neighbor



in a basinb;, andp(b; — b;), the total probability of going from basi to basinb;,
which is as the average over alE b; of the transition probabilities to solutions b;
(wherefb; is the size of the basity) :

ps—b) =Y pls—=5), p(b; — by) = ﬁ% 3 ps = b))

S/Ebj sEb;

For first and best improvement hill-climbing, we have defittezlprobabilityp; (s)
that a solutiors belongs to a basih We can, therefore, modify the previous definitions
to consider both types of network models:

pls b)) = D pls = s )p;(s), Ploi = b)) = 7 > pi(s)p(s — b))

S/ij s€b;

In the best-improvement, we hayg(s) = 1 for all the configurations in the bastnp.
Therefore, the definition of weights for the best-improvetease is consistent with
the previous definition. Now, we are in a position to definewlséghted local optima
network:

Local optima network. The weighted local optima netwoik,, = (NN, E) is the
graph where the nodes are the local optima, and there is aegdg £, with weight
w;; = p(b; — b;), between two nodesandj if p(b; — b;) > 0.

According to our definition of edge weights,; = p(b, — b;) may be different
thanw;, = p(b; — b;). Thus, two weights are needed in general, and we have an
oriented transition graph.

3 Analysis of the local optima networks

The NK family of landscapes [4] is a problem-independent modelcfmmstructing
multimodal landscapes that can gradually be tuned from #mtwrugged. In the
model, N refers to the number of (binary) genes in the genotype (igstring length)
and K to the number of genes that influence a particular gene. Bgasing the value
of K from0OtoN —1, N K landscapes can be tuned from smooth to rugged AT hari-
ables that form the context of the fithess contribution ofeggrcan be chosen according
to different models. The two most widely studied models hezandom neighborhood
model, where thes variables are chosen randomly according to a uniform Oistri
tion among then — 1 variables other thag;, and theadjacent neighborhoothodel,
in which the K variables that are closest tgin a total orderings, s, ..., s, (using
periodic boundaries). No significant differences betwéertivo models were found in
[4] in terms of the landscape global properties, such as mearber of local optima
or autocorrelation length. Similarly, our preliminary dteis on the characteristics of
the N K landscape optima networks, did not show noticeable diffezs between the
two neighborhood models. Therefore, we conducted our fudyson the more general
random model.



In order to minimize the influence of the random creation oélscapes, we consid-
ered 30 different and independent landscapes for each ocatidn of NV and/K param-
eter values. In all cases, the measures reported, are tregavef these 30 landscapes.
The study considered landscapes withe {14, 16} andK € {2,4,..., N—1}, which
are the largest possible parameter combinations that atlevexhaustive extraction of
local optima networks. Both best-improvement and firstsiovement local optima net-
works (b-LON and f-LON, respectively) were extracted andlgred.

3.1 Network features and connectivity

This section reports the most commonly used features toacteaise complex net-
works, in both the f-LON and b-LON models.

Table 1. N K landscapes network properties. Values are averages ovang80m in-
stances, standard deviations are shown as subseriptsidn,. represent the number
of vertexes and edge€”, the mean weighted clustering coefficiehtrepresent the
mean disparity coefficient] the mean path length, anf..; the mean path length to
the global optimum (see text for definitions).

Kl n [ m/ny | C" | Y I
N =14

both [b-LON|f-LON| b-LON b-LON f-LON  [b-LON|f-LON |b-LON|f-LON
146 0.89 | 1.00 |0.980.015]0.3670.0934|0.1720.0977| 761904 | 2818 | 136 106
7010 0.64 | 1.00 |0.920.013(0.1480.0101]0.0480.0079| 89¢ 867 26s | 2311
18415 | 0.37 | 1.00 |0.790.014]0.0930.0031]0.0250.0017| 11935 | 1406 | 449 | 4916
35022 | 0.21 | 1.00 |0.66¢.015[0.0700.0020(0.0170.0008| 1332 | 1834 | 6710 | 9520
10| 58525 | 0.12 | 1.00 |0.540.009|0.0580.0010(0.0140.0004| 1391 | 2183 | 8411 | 14196
12 89622 | 0.07 | 1.00 [0.460.004]|0.0520.0006|0.0130.0002| 1401 | 2472 | 10211 | 19642
13|11, 08520 0.06 | 1.00 [0.420.004]|0.0500.0006|0.0130.0002| 1391 | 2591 | 1049 |2183g
N =16

both [b-LON|f-LON| b-LON b-LON f-LON [b-LON|f-LON |b-LON|f-LON
3315 0.81 | 1.00 |0.96¢.024]0.3260.0579|0.1100.0590| 5614 | 3911 | 165 125
17833 | 0.60 | 1.00 |0.920.017]0.1370.0111]0.0330.0064| 1268 | 12713 | 359 | 3213
46029 | 0.32 | 1.00 |0.790.015(0.0840.0028|0.0160.0014| 1703 | 2158 | 6015 | 7023
89033 | 0.17 | 1.00 |{0.650.010(0.0620.0011(0.0110.0004| 1942 | 2825 | 8313 | 11826
1,47034| 0.09 | 1.00 [0.530.007|0.0500.0006 [0.0090.0002| 2061 | 3403 | 11215 | 18330
122, 25432| 0.05 | 1.00 |0.440.003|0.0430.0003[0.0080.0001| 2071 | 3802 | 14316 | 27148
1413, 26429| 0.03 | 1.00 [0.380.002|0.0400.0003|0.0080.0001 | 2031 | 4111 | 15813 | 35151
153, 86833| 0.02 | 1.00 [0.350.002]0.0390.0004|0.008¢.0000| 2001 | 4231 | 16213 | 39157

oo hr~N

[
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Number of nodes and edgesThe 2"¢ column of Tabld]L, reports the number of
nodes (local optimay,,, for all the studied landscapes. The b-LONs and f-LONs have
the same local optima, since both local search algorithitteouegh using a different
pivot-rule, are based on the bit-flip neighborhood. The oeks, however, have a dif-
ferent number of edges, as can be appreciated iB"thand4'" columns of Tabl€ll1,



which report the number of edges normalized by the squarkeohtimber of nodes.
Clearly, the number of edges is much larger for the f-LONSs Tlumber is always the
square of the number of nodes, which indicates that the f-& @i complete graphs. It
is worth noticing, however, that many of the edges have vemweights (see Figure
[3). For the b-LON model, the number of edges decrease syewitlil increasing values
of K.

Clustering coefficient or transitivity : Theclustering coefficieraf a network is the
average probability that that two neighbors of a given na@eatso neighbors of each
other. In the language of social networks, the friend of yfoiend is likely also to be
your friend. The standard clustering coefficiént [5] doesaamsider weighted edges.
We thus used thereighted clusteringneasure proposed by [1]. THE* column of table
[ lists the average coefficients of the b-LONs forslland K. It is apparent that the
clustering coefficients decrease regularly with incregéin which indicates that either
there are less transitions between neighboring basingdarii, and/or the transitions
are less likely to occur. On the other hand, the f-LONs c@oes to complete networks;
the calculation of the clustering coefficients revealed thiac* (i) = 1.0 (not shown
in the Table). Therefore, the f-LON is densely connectedfovalues ofK.

Disparity : The disparity measure proposed inl[1¥; (), gauges the heterogeneity
of the contributions of the edges of nodé¢o the total weight. Columng*” and 7t"
in Table[1 depict the disparity coefficients, for both netvorodels, respectively. The
heterogeneity decreases with increasing valuds .ofhis reflects that with high values
of K, the transitions to other basins tend to become equalllylika indication of a
more random structure (and thus a difficult search). It cao bé seen that the weights
for the f-LON model are less heterogenous (more uniform) foathe b-LON one.

Shortest path length Another standard metric to characterize the structure=tf n
works is the shortest path length (number of link hobs) betw®o nodes on the net-
work. In order to compute this measure on the optima netwbik given landscape,
we considered the expected number of bit-flip mutations &3 fiemm one basin to the
other. This expected number can be computed by considdramverse of the tran-
sition probabilities between basins. More formally, thstaihce between two nodes is
defined byd;; = 1/w;; wherew;; = p(b; — b;). Now, we can define the length
of a path between two nodes as being the sum of these distalocesthe edges that
connect the respective basins. Colurdffsand 7t" in Table[d report this measure on
the two network models. In both cases, the shortest patleases with/(, however,
for the b-LON the growth stagnates for largkrvalues. The paths are considerably
longer for the f-LON, with the exception of the lowest valud#sK. Some paths are
more relevant from the point of view of a stochastic localrskalgorithm following
a trajectory over the maxima network. Therefore, columd$ and11*” in Table[d,
report the shortest path length to the global optimum frointh&l other optima in the
landscape. The trend is clear, the path lengths to the optimarease steadily with
increasingk’, and similarly, the first-improvement network shows longaths. This
suggest that a larger number of hops will be needed to findltmboptimum when a
first-improvement local search is used. We must considevekier, that the number of
evaluations needed to explore a basin, would\b&émes lower for first-improvement
than for best-improvement.



Outgoing weight distribution: The standard topological characterization of (un-
weighed) networks is obtained by its degree distributidre degree of a node is defined
as its number of neighbours, and the degree distributiometaork is the distribution
over the frequencies of different degrees over all nodebemetwork. For weighted
networks, a characterization of weights is obtained byctmnectivity and weight dis-
tributionsp;,, (w) andp,..(w) that any given edge has incoming or outgoing weight
In our study, for each nodg the sum of outgoing edge weights is equal tas they
represent transition probabilities. So, an important meas the weighty;; of self-
connecting edges (remaining in the same node). We haveltdi®rew;; + s; = 1.

Figurel2, reports the outgoing weight distributigns; (w) (in log-scale on x-axis)
of both the f-LON and b-LON networks on a selected landscajile W = 6, and
N = 16. One can see that the weights, i.e. the transition proliakilio neighboring
basins are small. The distributions are far from uniformaisBonian, they are not close
to power-laws either. We couldn't find a simple fit to the cuegeich as stretched ex-
ponentials or exponentially truncated power laws. It carsden that the distributions
differ for the first and best LON models. There is a larger namdf edges with low
weights for the f-LONSs than for the b-LONs. Thus, even thotlghf-LONs are more
densely connected (indeed they are complete graphs) mahyg efiges have very low
weights. Figuré13 (left), shows the averages, over all thdenadn the network, of the
weightsw;; (i.e. the probabilities of remaining in the same basin adtdit-flip mu-
tation) for N = 16 and all theK values. Notice that, for both network models, the
weightsw;; are much higher when compared to thase with j # i (see FigLB right).
Thew;; are much lower for the first than for the best LON. In particulathe b-LON,
for K = 2, 50% of the random bit-flip mutations will produce a solution wviithihe
same basin of attraction, whereas this figure is of less 2hahin the f-LON. Indeed,
in this case, foiX' greater than 4, the probabilities of remaining in the sansinball
below10%, which suggests that escaping from local optima would beeets a first-
improvement local searcher.
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Fig. 2. Probability distribution of the network weights ; for outgoing edges with # 4
(in logscale on x-axis) foN = 16, K = 6. Averages on 30 independent landscapes.
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for landscapes wittv = 16 and all theK values.

3.2 Basins of attraction features

The previous section studied and compared the basic nefeattkres and connectivity
of the first and best LONs. The exhaustive extraction of thevokks, also produced

detailed information of the corresponding basins of attoac Therefore, this section
discusses the most relevant of the basin’s features.

Size of the global optimum basin When exploring the average size of the global
optimum basin of the f-LONs, we found that they decrease e&ptally with increas-
ing ruggednessi( values). This is consistent with the results for the b-LONuese
landscapes [8]. Moreover, the basins sizes for both netwar similar, with those of
f-LON being slightly smaller. This may suggest that for the same number of runs,
the success rate of a first-improvement heuristic would WweloOne needs to consider,
however, that the number of evaluations per run is smalléhigncase.

Basin sizes of the two network modetsA comparative study of the basin sizes
of the two network models revealed that they are highly dated. Only the small-
est basins of the f-LON model are larger in size when compgréide corresponding
smallest basins in the b-LON model.

Basin size and fithess of local optimaFig.[4 reports the correlation coefficients
p between the networks’ basin sizes and their fitness, for thetlfirst and best LONs,
and landscapes withh = 16 and all theK values. It can be observed that there is a
strong correlation between fitness and basin sizes for lyp#stof networks. Indeed,
for K < 10, the correlation is oves > 0.8. For rugged landscapek, > 8, the f-LON
shows reduced and decreasing coefficients as comparedhe iD&!.

Number of basins per solution on the f-LONs According to the definition of
basins (see secti@h 2), for the f-LON, a given solution mdgrgto a set of basins. Fig
(a) shows the average number of basins to which a solutionge (i.e £{7 | p;(s) >
0}). It can be observed that fof = 16 andK = 4, a solution belongs to neari% of
the total number of basins, whereas for= 14, a solution belongs to less thaa% of
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Fig. 4. Average of the correlation coefficient between the fitneslocdl optima and
their corresponding basin sizes 8t independent landscapes for both f-LON and b-
LON (N = 16, and all theK values).

the total number of basins. On average, a solution belorigssdasins for highi than
for low K. An exploration of the average number of basin per soluagnording to the
solution fitness value (Fifl 5 (b), fd¥ = 16) reveals a striking difference. While low
fitness solutions belong to nearly all basins, high fithekgiems belong to at most one
basin. The figure suggest the presence of a phase trangitismhjch the threshold of
the transition is lower for higli than for low K. This suggests that the structure of the
f-LON network for solutions with high fitness, resemblesttbfthe b-LON, whereas
the topology is different with respect to solutions with Ifitmess.
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selected values df’, the number of basins per solution according to the soldtiness

value. Averages on 30 independent landscapes.




4 Discussion

We have extended the recently propotedal Optima Network (LONModel to ana-
lyze the structural differences between first and best ingar@nt local search, in terms
of the local optima network connectivity and the nature @f torresponding basins of
attraction. The results of the analysis, on a selNd{ landscapes can be summarized
as follows. The impact of landscape ruggedndss/élue) on the network features is
similar for both models. First-improvement induces a dgnsennected network (in-
deed a complete network), while this is not the case on theilmggovement model.
However, many of the edges in the f-LON networks have very \agights. In par-
ticular, the self-connections (i.e. the probabilities @f@aining in the same basin after
a bit-flip mutation), are much smaller in the f-LON than in #h.ON model, which
suggests that escaping from local optima would be easiea fost-improvement lo-
cal searcher. The path lengths between local optima, anegebatany optima and the
global optimum, are generally larger in f-LON than in b-LOBtworks. We must con-
sider, however, that the number of evaluations needed tlmiexp basin, would bév
times lower for first-improvement than for best-improvemétie, therefore, suggest
that first-improvement is a better heuristic for exploriNd< landscapes. Our prelimi-
nary empirical results support this insight, a detailecbaot of them will be presented
elsewhere due to space restrictions. Most of our work ondhal loptima model has
been based on binary spaces &hH landscapes. However, we have recently started the
exploration of permutation search spaces, specificallyhadratic Assignment Prob-
lem (QAP) [2], which opens up the possibility of analyzindp@t permutation based
problems such as the traveling salesman and the permutitioshop problems. Our
current definition of transition probabilities, althougdry informative, produces highly
connected networks, which are not easy to study. Theref@eare currently consid-
ering alternative definitions and threshold values for tienectivity. Finally, although
the local optima network model is still under developmer#,avgue that it offers an
alternative view of combinatorial fitness landscapes, titian potentially contribute
to both our understanding of problem difficulty, and the desif effective heuristic
search algorithms.
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