Abstract
Let \(W, \ L\), and Q denote the sets {w 0, w 1, ..., w p }, \(\{\lambda_a^0, \) \(\lambda_a^1, \ldots, \lambda_a^p\}\) and {q 0, q 1, ..., q p }, respectively. An (n, W, L, λ c , Q) variable-weight optical orthogonal code C, or (n, W, L, λ c , Q)-OOC, is a collection of binary n-tuples such that for each 0 ≤ i ≤ p, there are exactly q i |C| codewords of weight w i , L is related to periodic auto-correlation, and λ c is related to periodic cross-correlation. The notation (n, W, λ, Q)- OOC is used to denote an (n, W, L, λ c , Q)-OOC with the property that \(\lambda_a^0=\lambda_a^1=\ldots=\lambda_a^p=\lambda_c=\lambda\). An (n, W, L, λ c , Q)-OOCs was introduced by Yang for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. A cyclic (v,K, 1) difference family (cyclic (v,K, λ)-DF in short) is a family \(\cal F=\{B_1, B_2, \ldots, B_t\}\) of t subsets of Z v , the residue ring of integers modulo v, K = {|B i |: 1 ≤ i ≤ t}, such that the differences in \(\cal F\), \(\Delta \cal F=\bigcup_{B\in \cal F}\Delta B\) cover each nonzero element of Z v exactly λ times, where for each \(B\in \cal F\), \(\Delta B=\{x-y: x, y\in B, x\ne y\}\), and \(|dev \ B_i|=v\), 1 ≤ i ≤ t, \(dev \ B_i=\{B_i+g: g\in Z_v\}\). A cyclic (v,W, 1,Q)-DF is defined to be a cyclic (v,W, 1)-DF with the property that the fraction of number of blocks of size w i is q i , 0 ≤ i ≤ p. In this paper, constructions for cyclic (v, {4, 6, 7},1,{1/3, 1/3, 1/3})-DFs for primes \(v\equiv 1\pmod {84}\), (v, {4, u},1,{1/2, 1/2})-DFs for primes \(v\equiv 1\pmod {u(u-1)+12}\), \(u\equiv 0, 1\pmod 3>4\) are presented. New optimal (v, W, 1,Q)-OOCs for 2 ≤ |W| ≤ 4 are then obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Salehi, J.A.: Code division multiple access techniques in optical fiber networks-Part I Fundamental Principles. IEEE Trans. Commun. 37, 824–833 (1989)
Salehi, J.A., Brackett, C.A.: Code division multiple access techniques in optical fiber networks-Part II Systems performance analysis. IEEE Trans. Commun. 37, 834–842 (1989)
Chung, F.R.K., Salehi, J.A., Wei, V.K.: Optical orthogonal codes: Design, analysis and applications. IEEE Trans. Inform. Theory 35, 595–604 (1989)
Golomb, S.W.: Digital communication with space application. Penisula, Los Altos (1982)
Massey, J.L., Mathys, P.: The collision channel without feedback. IEEE Trans. Inform. Theory 31, 192–204 (1985)
Salehi, J.A.: Emerging optical code-division multiple-access communications systems. IEEE Network 3, 31–39 (1989)
Vecchi, M.P., Salehi, J.A.: Neuromorphic networks based on sparse optical orthogonal codes. In: Neural Information Processing Systems-Natural and Synthetic, pp. 814–823. Amer. Inst. Phys, New York (1988)
Abel, R., Buratti, M.: Some progress on (v, 4, 1) difference families and optical orthogonal codes. J. Combin. Theory 106, 59–75 (2004)
Bitan, S., Etzion, T.: Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans. Inform. Theory 41, 77–87 (1995)
Buratti, M.: Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26, 111–125 (2002)
Chang, Y., Fuji-Hara, R., Miao, Y.: Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans. Inform. Theory 49, 1283–1292 (2003)
Chang, Y., Ji, L.: Optimal (4up, 5, 1) optical orthogonal codes. J. Combin. Des. 12, 346–361 (2004)
Chang, Y., Miao, Y.: Constructions for optimal optical orthogonal codes. Discrete Math. 261, 127–139 (2003)
Chen, K., Ge, G., Zhu, L.: Starters and related codes. J. Statist. Plann. Inference 86, 379–395 (2000)
Chu, W., Colbourn, C.J.: Recursive constructions for optimal (n, 4, 2)-OOCs. J. Combin. Des. 12, 333–345 (2004)
Chu, W., Golomb, S.W.: A new recursive construction for optical orthogonal codes. IEEE Trans. Inform. Theory 49, 3072–3076 (2003)
Chung, H., Kumar, P.V.: Optical orthogonal codes-new bounds and an optimal construction. IEEE Trans. Inform. Theory 36, 866–873 (1990)
Fuji-Hara, R., Miao, Y.: Optical orthogonal codes: Their bounds and new optimal constructions. IEEE Trans. Inform. Theory 46, 2396–2406 (2000)
Fuji-Hara, R., Miao, Y., Yin, J.: Optimal (9v, 4, 1) optical orthogonal codes. SIAM J. Discrete Math. 14, 256–266 (2001)
Ge, G., Yin, J.: Constructions for optimal (v, 4, 1) optical orthogonal codes. IEEE Trans. Inform. Theory 47, 2998–3004 (2001)
Ma, S., Chang, Y.: A new class of optimal optical orthogonal codes with weight five. IEEE Trans. Inform. Theory 50, 1848–1850 (2004)
Ma, S., Chang, Y.: Constructions of optimal optical orthogonal codes with weight five. J. Combin. Des. 13, 54–69 (2005)
Yin, J.: Some combinatorial constructions for optical orthogonal codes. Discrete Math. 185, 201–219 (1998)
Gu, F.R., Wu, J.: Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems. J. Lightw. Technol. 23, 740–748 (2005)
Yang, G.C.: Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements. IEEE Trans. Commun. 44, 47–55 (1996)
Yang, G.C.: Variable weight optical orthogonal codes for CDMA networks with multiple performance requirements. In: GLOBECOM 1993, vol. 1, pp. 488–492. IEEE, Los Alamitos (1993)
Wu, D., Fan, P., Li, H., Parampalli, U.: Optimal variable-weight optical orthogonal codes via cyclic difference families. In: 2009 IEEE International Symposium on Information Theory, ISIT 2009, June 28-July 3, pp. 448–452. IEEE, Los Alamitos (2009)
Buratti, M.: Pairwise balanced designs from finite fields. Discrete Math. 208/209, 103–117 (1999)
Wu, D., Chen, Z., Cheng, M.: A note on the existence of balanced (q, {3,4}, 1) difference families. The Australasian J. Combin. 41, 171–174 (2008)
Wu, D., Cheng, M., Chen, Z., Luo, H.: The existence of balanced (v, {3,6}, 1) difference families. Science in China (Ser. F) (to appear)
Abel, R., Buratti, M.: Differnce families. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn., pp. 392–410. Chapman and Hall/CRC, Boca Raton (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wu, D., Cao, J., Fan, P. (2010). New Optimal Variable-Weight Optical Orthogonal Codes. In: Carlet, C., Pott, A. (eds) Sequences and Their Applications – SETA 2010. SETA 2010. Lecture Notes in Computer Science, vol 6338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15874-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-15874-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15873-5
Online ISBN: 978-3-642-15874-2
eBook Packages: Computer ScienceComputer Science (R0)