Skip to main content

Estimation System for Forces and Torques in a Biped Motion

  • Conference paper
Computer Vision and Graphics (ICCVG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6374))

Included in the following conference series:

Abstract

In this paper we present a simple estimation system for ground reaction forces, inter-segmental forces and joint torques in the biped motion. The proposed system bases on classification of walk into two phases, left leg stance - right leg swing, and left leg swing - right leg stance. The system does not need any additional measurements of forces and moments. It uses matrix formulation for inverse dynamics problem of computing moment and torques on the basis of measurements of ve- locities and accelerations. The input signals are filtered with the use of the Savitzky Golay smoothing filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. Journal of Biomechanics 34, 153–161 (2001)

    Article  Google Scholar 

  2. Cahou, V., Luc, M., David, A.: Static optimal estimation of joint accelerations for inverse dynamics problem solution. Journal of Biomechanics 35, 1507–1513 (2002)

    Article  Google Scholar 

  3. Featherstone, R.: Rigid body dynamics algorithms. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  4. Forner-Cordero, A., Koopman, H.J.F.M., van der Helm, F.C.T.: Inverse dynamics calculations during gait with restricted ground reaction force information from pressure insoles. Gait & Posture 23, 189–199 (2006)

    Article  Google Scholar 

  5. Hatze, H.: The fundamental problem of myoskeletal inverse dynamics and its implications. Journal of Biomechanics 35, 109–115 (2002)

    Article  Google Scholar 

  6. Ma, B., Wu, Q.: Parametric study of repeatable gait for a planar five-link biped. Robotica 20, 493–498 (2002)

    Article  Google Scholar 

  7. Remy, C.D., Thelen, D.G.: Optimal Estimation of Dynamically Consistent Kinematics and Kinetics for Forward Dynamic Simulation. Journal of Biomechanical Engineering 131, 031005-1–031005-9 (2009)

    Google Scholar 

  8. Riemer, R., Hsiao-Wecksler, E.T.: Improving joint torque calculations: Optimization-based inverse dynamics to reduce the effect of motion errors. Journal of Biomechanics 41, 1503–1509 (2008)

    Article  Google Scholar 

  9. Riemer, R., Hsiao-Wecksler, E.T., Zhang, X.: Uncertainties in inverse dynamics solutions: A comprehensive analysis and an application to gait. Gait & Posture 27, 578–588 (2008)

    Article  Google Scholar 

  10. Runge, C., Zajac, F.E., Allum, J.H.J., Risher, D.W., Bryson, A.E., Honegger, F.: Estimating Net Joint Torques from Klnesiological Data Using Optimal Linear System Theory. IEEE Trans. Biomedical Engineering 42, 1158–1164 (1995)

    Article  Google Scholar 

  11. Samson, W., Desroches, G., Cheze, L., Dumas, R.: 3D dynamics of healthy shildres’s gait. Journal of Biomechanics 42, 2447–2453 (2009)

    Article  Google Scholar 

  12. Savitzky, A., Golay, M.J.E.: Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry 36, 1627–1639 (1964)

    Article  Google Scholar 

  13. Shelburne, K.B., Pandy, M.G., Anderson, F.C., Torry, M.R.: Pattern of anterior cruciate ligament force in normal walking. Journal of Biomechanics 37, 797–805 (2004)

    Article  Google Scholar 

  14. Switonski, A., Josinski, H., Jedrasiak, K., Polanski, A., Wojciechowski, K.: Classification of poses and movement phases (submitted)

    Google Scholar 

  15. Thelen, D.G., Anderson, F.C., Delp, S.L.: Generating dynamic simulations of movement using computed muscle control. Journal of Biomechanics 36, 321–328 (2003)

    Article  Google Scholar 

  16. Thelen, D.G., Anderson, F.C.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. Journal of Biomechanics 39, 1107–1115 (2006)

    Article  Google Scholar 

  17. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian Process Dynamical Models for Human Motion. IEEE Trans. PAMI 30, 283–298 (2008)

    Google Scholar 

  18. Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking, Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait and Posture  16, 215–232 (2002)

    Google Scholar 

  19. Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking, Part II: Lessons from dynamical simulations and clinical implications. Gait and Posture 17, 1–17 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Polański, A., Świtoński, A., Josiński, H., Jędrasiak, K., Wojciechowski, K. (2010). Estimation System for Forces and Torques in a Biped Motion. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2010. Lecture Notes in Computer Science, vol 6374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15910-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15910-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15909-1

  • Online ISBN: 978-3-642-15910-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics