Skip to main content

Fuzzy Hough Transform-Based Methods for Extraction and Measurements of Single Trees in Large-Volume 3D Terrestrial LIDAR Data

  • Conference paper
Computer Vision and Graphics (ICCVG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6374))

Included in the following conference series:

Abstract

This startup study suggests that more accurate and quicker methods of forestry terrestrial LIDAR data analysis can be developed, but new benchmark data sets with the ground truth data known are necessary for these methods to be validated. It follows from the literature review that the improvement in the methods can be attained by the use of newer Hough transform-based (HT) and other robust fuzzy methods for data segmentation and tree measurements. Segmentation of trees can be done by the limit fuzzification of the data around the breast height. Several HT variants having different properties can be applied to measure the diameter at breast height and the accuracies better than those offered by the commercial software seem to be attainable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff, T., Spiecker, H.: Algorithms for the automatic detection of trees in laser-scanner data. In: Thies et al [19], pp. 71–75

    Google Scholar 

  2. Bator, M., Chmielewski, L.J.: Finding regions of interest for cancerous masses enhanced by elimination of linear structures and considerations on detection correctness measures in mammography. Pattern Analysis & Applications 12(4), 377–390 (2009), doi:10.1007/s10044-008-0134-x

    Article  Google Scholar 

  3. Bienert, A., Maas, H.-G., Scheller, S.: Analysis of the information content of terrestrial laserscanner point clouds for the automatic determination of forest inventory parameters. In: Koukal and Schneider [13], pp. 55–60

    Google Scholar 

  4. Bienert, A., Scheller, S., et al.: Application of terrestrial laser scanners for the determination of forest inventory parameters. In: Maas, H.G., Schneider, D. (eds.) Proc. ISPRS Commission V Symposium on Image Engineering and Vision Metrology, pp. 25–27 (September 2006)

    Google Scholar 

  5. Bienert, A., Scheller, S., et al.: Tree detection and diameter estimations by analysis of forest terrestrial laserscanner point clouds. In: Rönnholm et al. [17], pp. 50–55

    Google Scholar 

  6. Chmielewski, L.J.: Fuzzy histograms, weak fuzzification and accumulation of periodic quantities. Application in two accumulation-based image processing methods. Pattern Analysis & Applications 9(2-3), 189–210 (2006) doi:10.1007/s10044-006-0037-7

    Google Scholar 

  7. Danson, F.M., Hetherington, D., et al.: Three-dimensional forest cannopy structure from terrestrial laser scanning. In: Koukal and Schneider [13], pp. 61–65

    Google Scholar 

  8. Hough, P.V.C.: Machine analysis of bubble chamber pictures. In: Proc. Int. Conf. on High Energy Accelerators and Instrumentation. CERN (1959)

    Google Scholar 

  9. Illingworth, J., Kittler, J.: The adaptive Hough transform. IEEE Trans. PAMI 9(5), 690–697 (1987)

    Google Scholar 

  10. Illingworth, J., Kittler, J.: A survey of the Hough transform. Comp. Vision, Graph., and Image Proc. 44(1), 87–116 (1988)

    Article  Google Scholar 

  11. Khoshelham, K.: Extending Generalized Hough Transform to detect 3D objects in laser range data. In: Rönnholm et al. [17], pp. 206–210

    Google Scholar 

  12. Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators. Comm. Assoc. of Computing Machinery 18(2), 120–122 (1975)

    MATH  Google Scholar 

  13. Koukal, T., Schneider, W. (eds.): Proc. Int. Workshop on 3D Remote Sensing in Forestry, Vienna, February 14-15. EARSeL SIG Forestry and ISPRS WG VIII/11 (2006)

    Google Scholar 

  14. Meer, P.: Robust techniques for computer vision. In: Medioni, G., Kang, S.B. (eds.) Emerging Topics in Computer Vision, pp. 107–190. Prentice Hall, Englewood Cliffs (2004)

    Google Scholar 

  15. Nixon, M., Aguado, A.: Feature Extraction & Image Processing. Newnes, Oxford (2002)

    Google Scholar 

  16. Pitas, I.: Digital Image Processing Algorithms and Applications. John Wiley & Sons, Inc., New York (2000)

    Google Scholar 

  17. Rönnholm, P., Hyyppä, H., Hyyppä, J. (eds.): Proc. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, part 3/W52 of IAPRS, Espoo, Finland, September 12-14, vol. XXXVI (2007)

    Google Scholar 

  18. Simonse, M., Aschoff, T., et al.: Automatic determination of forest inventory parameters using terrestrial laserscanning. In: Proc. ScandLaser Scientific Workshop on Airborne Laser Scanning of Forests, Umeå, Sweden, pp. 251–257 (2003)

    Google Scholar 

  19. Thies, M., Koch, B., et al. (eds.): Laser Scanners for Forest and Landscape Assessment. In: Proc. of the ISPRS working group VIII/2, part 8/W2 of International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Freiburg, Germany, October 3-6, vol. XXXXVI (2004)

    Google Scholar 

  20. Thies, M., Spiecker, H.: Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. In: Thies et al. [19], pp. 192–197

    Google Scholar 

  21. Vosselman, G., Gorte, B.G.H., Sithole, G., Rabbani, T.: Recognising structure in laser scanner point clouds. In: Thies et al. [19], pp. 33–38

    Google Scholar 

  22. Zawiła-Niedźwiecki, T., Stereńczak, K., Bałazy, R., Wencel, A., Strzeliński, P., Zasada, M.: The use of terrestrial and airborne LIDAR technology in forest inventory. Ambiência 4, 57–68 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chmielewski, L.J., Bator, M., Zasada, M., Stereńczak, K., Strzeliński, P. (2010). Fuzzy Hough Transform-Based Methods for Extraction and Measurements of Single Trees in Large-Volume 3D Terrestrial LIDAR Data. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2010. Lecture Notes in Computer Science, vol 6374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15910-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15910-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15909-1

  • Online ISBN: 978-3-642-15910-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics