Skip to main content

Defeasibility in Answer Set Programs via Argumentation Theories

  • Conference paper
Web Reasoning and Rule Systems (RR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6333))

Included in the following conference series:

Abstract

Defeasible reasoning has been studied extensively in the last two decades and many different and dissimilar approaches are currently on the table. This multitude of ideas has made the field hard to navigate and the different techniques hard to compare. Our earlier work on Logic Programming with Defaults and Argumentation Theories (LPDA) introduced a degree of unification into the approaches that rely on the well-founded semantics. The present work takes this idea further and introduces ASPDA—a unifying framework for defeasibility of disjunctive logic programs under the Answer Set Programming (ASP). Since the well-founded and the answer set semantics underlie almost all existing approaches to defeasible reasoning in Logic Programming, LPDA and ASPDA together capture most of those approaches. In addition to ASPDA, we obtained a number of interesting and non-trivial results. First, we show that ASPDA is reducible to ordinary ASP programs, albeit at the cost of exponential blowup in the number of rules. Second, we study reducibility of ASPDA to the non-disjunctive case and show that head-cycle-free ASPDA programs reduce to the non-disjunctive case—similarly to head-cycle-free ASP programs, but through a more complex transformation. The blowup in the program size is linear in this case.

This work is part of the SILK (Semantic Inference on Large Knowledge) project sponsored by Vulcan, Inc. It was also partially supported by the NSF grant 0964196.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic into logic programming. Theory and Practice of Logic Programming (TPLP) 6(6), 703–735 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Ann. Math. Artif. Intell. 12(1-2), 53–87 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brewka, G., Eiter, T.: Prioritizing default logic. In: Intellectics and Computational Logic – Papers in Honour of Wolfgang Bibel, pp. 27–45. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  4. Chen, W., Kifer, M., Warren, D.: HiLog: A foundation for higher-order logic programming. Journal of Logic Programming 15(3), 187–230 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Delgrande, J., Schaub, T., Tompits, H.: A framework for compiling preferences in logic programs. Theory and Practice of Logic Programming 2, 129–187 (2003)

    Article  MathSciNet  Google Scholar 

  6. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference handling approaches in nonmonotonic reasoning. Computational Intelligence 20(12), 308–334 (2004)

    Article  MathSciNet  Google Scholar 

  7. Dix, J., Gottlob, G., Marek, V.: Reducing disjunctive to non-disjunctive semantics by shift-operations. Fundamenta Informaticae XXVIII(1/2), 87–100 (1996)

    MathSciNet  Google Scholar 

  8. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computing preferred answer sets by meta-interpretation in answer set programming. Theory and Practice of Logic Programming 3(4), 463–498 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gelder, A.V., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of the ACM 38, 620–650 (1991)

    MATH  Google Scholar 

  10. Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 285–316. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of ICLP/SLP, pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  12. Gelfond, M., Przymusinska, H., Lifschitz, V., Truszczynski, M.: Disjunctive defaults. In: Proceedings of the International Conference on Knowledge Representation and Reasoning, pp. 230–237 (1991)

    Google Scholar 

  13. Gelfond, M., Son, T.: Reasoning with prioritized defaults. In: Dix, J., Moniz Pereira, L., Przymusinski, T.C. (eds.) LPKR 1997. LNCS (LNAI), vol. 1471, pp. 164–223. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Grosof, B.: A courteous compiler from generalized courteous logic programs to ordinary logic programs. Technical Report Supplementary Update Follow-On to RC 21472, IBM (July 1999)

    Google Scholar 

  15. Kifer, M.: FLORA-2: An object-oriented knowledge base language. The FLORA-2 Web Site, http://flora.sourceforge.net

  16. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based languages. Journal of ACM 42, 741–843 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)

    Article  MathSciNet  Google Scholar 

  18. Lloyd, J.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  19. Morales, A.R., Tu, P.H., Son, T.C.: An extension to conformant planning using logic programming. In: IJCAI, pp. 1991–1996 (2007)

    Google Scholar 

  20. Wan, H., Grosof, B., Kifer, M., Fodor, P., Liang, S.: Logic programming with defaults and argumentation theories. In: ICLP, pp. 432–448 (2009)

    Google Scholar 

  21. Wang, K., Zhou, L., Lin, F.: Alternating fixpoint theory for logic programs with priority. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 164–178. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wan, H., Kifer, M., Grosof, B. (2010). Defeasibility in Answer Set Programs via Argumentation Theories . In: Hitzler, P., Lukasiewicz, T. (eds) Web Reasoning and Rule Systems. RR 2010. Lecture Notes in Computer Science, vol 6333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15918-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15918-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15917-6

  • Online ISBN: 978-3-642-15918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics