Abstract
We propose an abduction-based formalism that uses description logics for the ontology and Horn rules for defining the space of hypotheses for explanations, and we use Markov logic to define the motivation for the agent to generate explanations on the one hand, and for ranking different explanations on the other. The formalism is applied to media interpretation problems in a agent-oriented scenario.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Castano, S., Espinosa, S., Ferrara, A., Karkaletsis, V., Kaya, A., Möller, R., Montanelli, S., Petasis, G., Wessel, M.: Multimedia interpretation for dynamic ontology evolution. Journal of Logic and Computation (2008)
Domingos, P., Richardson, M.: Markov logic: A unifying framework for statistical relational learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning, pp. 339–371. MIT Press, Cambridge (2007)
Espinosa-Peraldi, S., Kaya, A., Möller, R.: Formalizing multimedia interpretation based on abduction over description logic aboxes. In: Cuenca-Grau, B., Horrocks, I., Motik, B. (eds.) Proc. of the 22nd International Workshop on Description Logics, DL 2009 (2010)
Espinosa-Peraldi, S., Kaya, A., Möller, R.: Logical formalization of multimedia interpretation. In: Tsatsaronis, G., Paliouras, G., Spyropoulos, C.D. (eds.) Knowledge-Driven Multimedia Information Extraction and Ontology Evolution. LNCS, vol. 6050. Springer, Heidelberg (2010)
Gries, O., Möller, R., Nafissi, A., Rosenfeld, M., Sokolski, K., Wessel, M.: A probabilistic abduction engine for media interpretation. Technical report, Hamburg University of Technology (2010), http://www.sts.tu-harburg.de/tech-reports/2010/GMNR10.pdf
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)
Poole, D.: Probabilistic horn abduction and bayesian networks. Artificial Intelligence 64(1), 81–129 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gries, O., Möller, R., Nafissi, A., Rosenfeld, M., Sokolski, K., Wessel, M. (2010). A Probabilistic Abduction Engine for Media Interpretation Based on Ontologies. In: Hitzler, P., Lukasiewicz, T. (eds) Web Reasoning and Rule Systems. RR 2010. Lecture Notes in Computer Science, vol 6333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15918-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-15918-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15917-6
Online ISBN: 978-3-642-15918-3
eBook Packages: Computer ScienceComputer Science (R0)