Skip to main content

Bone Remodelling: A Complex Automata-Based Model Running in BioShape

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6350))

Abstract

Bone remodelling, as many biological phenomena, is inherently multi-scale, i.e. it is characterised by interactions involving different scales at the same time. At this aim, we exploit the Complex Automata paradigm and the BioShape 3D spatial simulator respectively (i) for describing the bone remodelling process in terms of a 2-scale aggregation of uniform Cellular Automata coupled by a well-established composition pattern, and (ii) for executing them in a uniform and integrated way in terms of shapes equipped with perception and movement capabilities.

On the one hand, the proposed model confirms the high expressiveness degree of Complex Automata to describe multi-scale phenomena. On the other hand, the possibility of executing such a model in BioShape highlights the existence of a general mapping - from Complex Automata into the BioShape native modelling paradigm - also enforced by the fact that both approaches result to be suitable for handling different scales in a uniform way, for including spatial information and for bypassing inter-scale homogenization problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frost, H.: Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s Law: the remodeling problem. Anat. Rec. 226, 414–422 (1990)

    Article  Google Scholar 

  2. Boyle, W., Simonet, W., Lacey, D.: Osteoclast differentiation and activation. Nature 423, 337–342 (2003)

    Article  Google Scholar 

  3. Harada, S., Rodan, G.: Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003)

    Article  Google Scholar 

  4. Rouhi, G., Epstein, M., Sudak, L., Herzog, W.: Modeling bone resorption using mixture theory with chemical reactions. Journal of Mechanics of Materials and Structures 2(6) (2007)

    Google Scholar 

  5. Nauman, E., Satcher, R., Keaveny, T., Halloran, B., Bikle, D.: Osteoblasts respond to pulsatile fluid flow with short-term increases in pge (2) but no change in mineralization. Journal of Applied Physiology 90, 1849–1854 (2001)

    Google Scholar 

  6. Turner, C.: Toward a mathematical description of bone biology: the principle of cellular accommodation. Calcified Tissue International 65(6) (1999)

    Google Scholar 

  7. Cowin, C., Hegedus, D.: Bone remodeling i: A theory of adaptive elasticity. Journal of Elasticity 6, 313–326 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cowin, C., Hegedus, D.: Bone remodeling ii: small strain adaptive elasticity. Journal of Elasticity 6, 337–352 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huiskes, R., Ruimerman, R., Lenthe, G.V., Janssen, J.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405, 704–706 (2000)

    Article  Google Scholar 

  10. Hunter, P.J., Li, W.W., McCulloch, A.D., Noble, D.: Multiscale modeling: Physiome project standards, tools, and databases. Computer 39, 48–54 (2006)

    Article  Google Scholar 

  11. Sloot, P.M.A., Hoekstra, A.G.: Multi-scale modelling in computational biomedicine. Brief. Bioinform. (2009)

    Google Scholar 

  12. Cristofolini, L., Taddei, F., Baleani, M., Baruffaldi, F., Stea, S., Viceconti, M.: Multiscale investigation of the functional properties of the human femur. Philos. Transact. A Math. Phys. Eng. Sci. 366(1879), 3319–3341 (2008)

    Article  Google Scholar 

  13. Hoekstra, A.G., Falcone, J.L., Caiazzo, A., Chopard, B.: Multi-scale modeling with cellular automata: The complex automata approach. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 192–199. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Buti, F., Cacciagrano, D., Corradini, F., Merelli, E., Tesei, L.: BioShape: a spatial shape-based scale-independent simulation environment for biological systems. In: ICCS 2010: Proc. of Simulation of Multiphysics Multiscale Systems, 7th International Workshop (2010), http://cosy.cs.unicam.it/bioshape/iccs2010.pdf

  15. CxALite, http://github.com/paradigmatic/CxALite/

  16. Bartocci, E., Corradini, F., Di Berardini, M.R., Merelli, E., Tesei, L.: Shape Calculus. A spatial calculus for 3D colliding shapes. Technical Report 6, Department of Mathematics and Computer Science, University of Camerino (January 2010) (accepted for publication in the Scientific Annals of Computer Science) (to appear in 2010)

    Google Scholar 

  17. Evans, D.J.W., Lawford, P.V., Gunn, J., Walker, D., Hose, D.R., Smallwood, R.H., Chopard, B., Krafczyk, M., Bernsdorf, J., Hoekstra, A.G.: The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery. Phil. Trans. R. Soc. A 366(1879), 3343–3360 (2008)

    Article  Google Scholar 

  18. Caiazzo, A., Falcone, D.E.J., Hegewald, J., Lorenz, E., Stahl, B., Wang, D., Bernsdorf, J., Chopard, B., Gunn, J., Hose, R., Krafczyk, M., Lawford, P., Smallwood, R., Walker, D., Hoekstra, A.: Towards a Complex Automata Multiscale Model of In-Stent Restenosis. LNCS, vol. 5544, pp. 705–714. Springer, Heidelberg (2009)

    Google Scholar 

  19. Christley, S., Zhu, X., Newman, S.A., Alber, M.S.: Multiscale agent-based simulation for chondrogenic pattern formation in vitro. Cybern. Syst. 38(7), 707–727 (2007)

    Article  MATH  Google Scholar 

  20. Mullender, M.G., van der Meer, D.D., Huiskes, R., Lips, P.: Osteocyte density changes in aging and osteoporosis. Bone 18(2), 109–113 (1996)

    Article  Google Scholar 

  21. Marotti, G., Cané, P.S., Palumbo, C.: Structure-function relationships in the osteocyte. Ital. J. Miner. Electrolyte Matab. 4, 93–106 (1990)

    Google Scholar 

  22. Penninger, C., Patel, N., Niebur, G., Tovar, A., Renaud, J.: A fully anisotropic hierarchical hybrid cellular automaton algorithm to simulate bone remodeling. Mechanics Research Communications 35(1-2), 32–42 (2008)

    Article  MATH  Google Scholar 

  23. Corradini, F., Merelli, E.: Hermes: agent-base middleware for mobile computing. In: Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 234–270. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Textor, J., Hansen, B.: Hybrid simulation algorithms for an agent-based model of the immune response. Cybern. Syst. 40(5), 390–417 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cacciagrano, D., Corradini, F., Merelli, E. (2010). Bone Remodelling: A Complex Automata-Based Model Running in BioShape . In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds) Cellular Automata. ACRI 2010. Lecture Notes in Computer Science, vol 6350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15979-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15979-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15978-7

  • Online ISBN: 978-3-642-15979-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics