Abstract
Bone remodelling, as many biological phenomena, is inherently multi-scale, i.e. it is characterised by interactions involving different scales at the same time. At this aim, we exploit the Complex Automata paradigm and the BioShape 3D spatial simulator respectively (i) for describing the bone remodelling process in terms of a 2-scale aggregation of uniform Cellular Automata coupled by a well-established composition pattern, and (ii) for executing them in a uniform and integrated way in terms of shapes equipped with perception and movement capabilities.
On the one hand, the proposed model confirms the high expressiveness degree of Complex Automata to describe multi-scale phenomena. On the other hand, the possibility of executing such a model in BioShape highlights the existence of a general mapping - from Complex Automata into the BioShape native modelling paradigm - also enforced by the fact that both approaches result to be suitable for handling different scales in a uniform way, for including spatial information and for bypassing inter-scale homogenization problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Frost, H.: Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s Law: the remodeling problem. Anat. Rec. 226, 414–422 (1990)
Boyle, W., Simonet, W., Lacey, D.: Osteoclast differentiation and activation. Nature 423, 337–342 (2003)
Harada, S., Rodan, G.: Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003)
Rouhi, G., Epstein, M., Sudak, L., Herzog, W.: Modeling bone resorption using mixture theory with chemical reactions. Journal of Mechanics of Materials and Structures 2(6) (2007)
Nauman, E., Satcher, R., Keaveny, T., Halloran, B., Bikle, D.: Osteoblasts respond to pulsatile fluid flow with short-term increases in pge (2) but no change in mineralization. Journal of Applied Physiology 90, 1849–1854 (2001)
Turner, C.: Toward a mathematical description of bone biology: the principle of cellular accommodation. Calcified Tissue International 65(6) (1999)
Cowin, C., Hegedus, D.: Bone remodeling i: A theory of adaptive elasticity. Journal of Elasticity 6, 313–326 (1976)
Cowin, C., Hegedus, D.: Bone remodeling ii: small strain adaptive elasticity. Journal of Elasticity 6, 337–352 (1976)
Huiskes, R., Ruimerman, R., Lenthe, G.V., Janssen, J.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405, 704–706 (2000)
Hunter, P.J., Li, W.W., McCulloch, A.D., Noble, D.: Multiscale modeling: Physiome project standards, tools, and databases. Computer 39, 48–54 (2006)
Sloot, P.M.A., Hoekstra, A.G.: Multi-scale modelling in computational biomedicine. Brief. Bioinform. (2009)
Cristofolini, L., Taddei, F., Baleani, M., Baruffaldi, F., Stea, S., Viceconti, M.: Multiscale investigation of the functional properties of the human femur. Philos. Transact. A Math. Phys. Eng. Sci. 366(1879), 3319–3341 (2008)
Hoekstra, A.G., Falcone, J.L., Caiazzo, A., Chopard, B.: Multi-scale modeling with cellular automata: The complex automata approach. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 192–199. Springer, Heidelberg (2008)
Buti, F., Cacciagrano, D., Corradini, F., Merelli, E., Tesei, L.: BioShape: a spatial shape-based scale-independent simulation environment for biological systems. In: ICCS 2010: Proc. of Simulation of Multiphysics Multiscale Systems, 7th International Workshop (2010), http://cosy.cs.unicam.it/bioshape/iccs2010.pdf
Bartocci, E., Corradini, F., Di Berardini, M.R., Merelli, E., Tesei, L.: Shape Calculus. A spatial calculus for 3D colliding shapes. Technical Report 6, Department of Mathematics and Computer Science, University of Camerino (January 2010) (accepted for publication in the Scientific Annals of Computer Science) (to appear in 2010)
Evans, D.J.W., Lawford, P.V., Gunn, J., Walker, D., Hose, D.R., Smallwood, R.H., Chopard, B., Krafczyk, M., Bernsdorf, J., Hoekstra, A.G.: The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery. Phil. Trans. R. Soc. A 366(1879), 3343–3360 (2008)
Caiazzo, A., Falcone, D.E.J., Hegewald, J., Lorenz, E., Stahl, B., Wang, D., Bernsdorf, J., Chopard, B., Gunn, J., Hose, R., Krafczyk, M., Lawford, P., Smallwood, R., Walker, D., Hoekstra, A.: Towards a Complex Automata Multiscale Model of In-Stent Restenosis. LNCS, vol. 5544, pp. 705–714. Springer, Heidelberg (2009)
Christley, S., Zhu, X., Newman, S.A., Alber, M.S.: Multiscale agent-based simulation for chondrogenic pattern formation in vitro. Cybern. Syst. 38(7), 707–727 (2007)
Mullender, M.G., van der Meer, D.D., Huiskes, R., Lips, P.: Osteocyte density changes in aging and osteoporosis. Bone 18(2), 109–113 (1996)
Marotti, G., Cané, P.S., Palumbo, C.: Structure-function relationships in the osteocyte. Ital. J. Miner. Electrolyte Matab. 4, 93–106 (1990)
Penninger, C., Patel, N., Niebur, G., Tovar, A., Renaud, J.: A fully anisotropic hierarchical hybrid cellular automaton algorithm to simulate bone remodeling. Mechanics Research Communications 35(1-2), 32–42 (2008)
Corradini, F., Merelli, E.: Hermes: agent-base middleware for mobile computing. In: Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 234–270. Springer, Heidelberg (2005)
Textor, J., Hansen, B.: Hybrid simulation algorithms for an agent-based model of the immune response. Cybern. Syst. 40(5), 390–417 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cacciagrano, D., Corradini, F., Merelli, E. (2010). Bone Remodelling: A Complex Automata-Based Model Running in BioShape . In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds) Cellular Automata. ACRI 2010. Lecture Notes in Computer Science, vol 6350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15979-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-15979-4_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15978-7
Online ISBN: 978-3-642-15979-4
eBook Packages: Computer ScienceComputer Science (R0)