Skip to main content

Local Structure Analysis by Isotropic Hilbert Transforms

  • Conference paper
Pattern Recognition (DAGM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Included in the following conference series:

Abstract

This work presents the isotropic and orthogonal decomposition of 2D signals into local geometrical and structural components. We will present the solution for 2D image signals in four steps: signal modeling in scale space, signal extension by higher order generalized Hilbert transforms, signal representation in classical matrix form, followed by the most important step, in which the matrix-valued signal will be mapped to a so called multivector. We will show that this novel multivector-valued signal representation is an interesting space for complete geometrical and structural signal analysis. In practical computer vision applications lines, edges, corners, and junctions as well as local texture patterns can be analyzed in one unified algebraic framework. Our novel approach will be applied to parameter-free multilayer decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proceedings of the IEEE 69(5), 529–541 (1981)

    Article  Google Scholar 

  2. Huang, T., Burnett, J., Deczky, A.: The importance of phase in image processing filters. IEEE Trans. on Acoustics, Speech and Signal Processing 23(6), 529–542 (1975)

    Article  Google Scholar 

  3. Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21, 5–26 (2004)

    Article  MathSciNet  Google Scholar 

  4. Delanghe, R.: On some properties of the Hilbert transform in Euclidean space. Bull. Belg. Math. Soc. Simon Stevin 11(2), 163–180 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Köthe, U., Felsberg, M.: Riesz-transforms vs. derivatives: On the relationship between the boundary tensor and the energy tensor. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 179–191. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  7. Wietzke, L., Sommer, G., Fleischmann, O.: The geometry of 2D image signals. In: IEEE Computer Society on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1690–1697 (2009)

    Google Scholar 

  8. Felsberg, M.: Low-level image processing with the structure multivector. Technical Report 2016, Kiel University, Department of Computer Science (2002)

    Google Scholar 

  9. Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House Inc., Boston (1996)

    MATH  Google Scholar 

  10. Pan, W., Bui, T.D., Suen, C.Y.: Rotation invariant texture classification by ridgelet transform and frequency-orientation space decomposition. Signal Process. 88(1), 189–199 (2008)

    Article  MATH  Google Scholar 

  11. Perwass, C.: Geometric Algebra with Applications in Engineering. Geometry and Computing, vol. 4. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  12. Sobczyk, G., Erlebacher, G.: Hybrid matrix geometric algebra. In: Li, H., Olver, P.J., Sommer, G. (eds.) IWMM-GIAE 2004. LNCS, vol. 3519, pp. 191–206. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Danielsson, P.E., Lin, Q., Ye, Q.Z.: Efficient detection of second-degree variations in 2D and 3D images. Journal of Visual Communication and Image Representation 12(3), 255–305 (2001)

    Article  Google Scholar 

  14. Gabor, D.: Theory of communication. Journal IEE, London 93(26), 429–457 (1946)

    Google Scholar 

  15. Stuke, I., Aach, T., Barth, E., Mota, C.: Analysing superimposed oriented patterns. In: 6th IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 133–137. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wietzke, L., Fleischmann, O., Sedlazeck, A., Sommer, G. (2010). Local Structure Analysis by Isotropic Hilbert Transforms. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics