Skip to main content

Classification of Swimming Microorganisms Motion Patterns in 4D Digital In-Line Holography Data

  • Conference paper
Pattern Recognition (DAGM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Included in the following conference series:

  • 2476 Accesses

Abstract

Digital in-line holography is a 3D microscopy technique which has gotten an increasing amount of attention over the last few years in the fields of microbiology, medicine and physics. In this paper we present an approach for automatically classifying complex microorganism motions observed with this microscopy technique. Our main contribution is the use of Hidden Markov Models (HMMs) to classify four different motion patterns of a microorganism and to separate multiple patterns occurring within a trajectory. We perform leave-one-out experiments with the training data to prove the accuracy of our method and to analyze the importance of each trajectory feature for classification. We further present results obtained on four full sequences, a total of 2500 frames. The obtained classification rates range between 83.5% and 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ginger, M., Portman, N., McKean, P.: Swimming with protists: perception, motility and flagellum assembly. Nature Reviews Microbiology 6(11), 838–850 (2008)

    Article  Google Scholar 

  2. Stoodley, P., Sauer, K., Davies, D., Costerton, J.: Biofilms as complex differentiated communities. Annual Review of Microbiology 56, 187–209 (2002)

    Article  Google Scholar 

  3. Heydt, M., Rosenhahn, A., Grunze, M., Pettitt, M., Callow, M.E., Callow, J.A.: Digital in-line holography as a 3d tool to study motile marine organisms during their exploration of surfaces. The Journal of Adhesion 83(5), 417–430 (2007)

    Article  Google Scholar 

  4. Frymier, P., Ford, R., Berg, H., Cummings, P.: 3d tracking of motile bacteria near a solid planar surface. Proc. Natl. Acad. Sci. U.S.A. 92(13), 6195–6199 (1995)

    Article  Google Scholar 

  5. Baba, S., Inomata, S., Ooya, M., Mogami, Y., Izumikurotani, A.: 3d recording and measurement of swimming paths of microorganisms with 2 synchronized monochrome cameras. Rev. of Sci. Instruments 62(2), 540–541 (1991)

    Article  Google Scholar 

  6. Weeks, E., Crocker, J., Levitt, A., Schofield, A., Weitz, D.: 3d direct imaging of structural relaxation near the colloidal glass transition. Science 287(5452), 627–631 (2000)

    Article  Google Scholar 

  7. Berg, H.: Random walks in biology. Princeton University Press, Princeton (1993)

    Google Scholar 

  8. Hoyle, D., Rattay, M.: Pca learning for sparse high-dimensional data. Europhysics Letters 62(1) (2003)

    Google Scholar 

  9. Wang, X., Grimson, E.: Trajectory analysis and semantic region modeling using a nonparametric bayesian model. In: CVPR (2008)

    Google Scholar 

  10. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–442 (2004)

    Google Scholar 

  11. Sbalzariniy, I., Theriot, J., Koumoutsakos, P.: Machine learning for biological trajectory classification applications. Center for Turbulence Research, 305–316 (2002)

    Google Scholar 

  12. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2) (1989)

    Google Scholar 

  13. Chen, M., Kundu, A., Zhou, J.: Off-line handwritten word recognition using a hidden markov model type stochastic network. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 16 (1994)

    Google Scholar 

  14. Nefian, A., Hayes, M.H.: Hidden markov models for face recognition. In: ICASSP (1998)

    Google Scholar 

  15. Yamato, J., Ohya, J., Ishii, K.: Recognizing human action in time-sequential images using hidden markov model. In: CVPR (1992)

    Google Scholar 

  16. Brand, M., Kettnaker, V.: Discovery and segmentation of activities in video. IEEE Trans. Pattern Anal. Mach. Intell (TPAMI) 22(8), 844–851 (2000)

    Article  Google Scholar 

  17. Gabor, D.: A new microscopic principle. Nature 161(8), 777 (1948)

    Article  Google Scholar 

  18. Xu, W., Jericho, M., Meinertzhagen, I., Kreuzer, H.: Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001)

    Article  Google Scholar 

  19. Heydt, M., Divós, P., Grunze, M., Rosenhahn, A.: Analysis of holographic microscopy data to quantitatively investigate three dimensional settlement dynamics of algal zoospores in the vicinity of surfaces. Eur. Phys. J. E (2009)

    Google Scholar 

  20. Lu, J., Fugal, J., Nordsiek, H., Saw, E., Shaw, R., Yang, W.: Lagrangian particle tracking in 3d via single-camera in-line digital holography. New Journal of Physics 10 (2008)

    Google Scholar 

  21. Leal-Taixé, L., Heydt, M., Rosenhahn, A., Rosenhahn, B.: Automatic tracking of swimming microorganisms in 4d digital in-line holography data. In: IEEE WMVC (2009)

    Google Scholar 

  22. Iken, K., Amsler, C., Greer, S., McClintock, J.: Qualitative and quantitative studies of the swimming behaviour of hincksia irregularis (phaeophyceae) spores: ecological implications and parameters for quantitative swimming assays. Phycologia 40, 359–366 (2001)

    Article  Google Scholar 

  23. Fugal, J., Schulz, T., Shaw, R.: Practical methods for automated reconstruction and characterization of particles in digital in-line holograms. Meas. Sci. Technol. 20, 075501 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leal-Taixé, L., Heydt, M., Weiße, S., Rosenhahn, A., Rosenhahn, B. (2010). Classification of Swimming Microorganisms Motion Patterns in 4D Digital In-Line Holography Data. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics