Abstract
Digital in-line holography is a 3D microscopy technique which has gotten an increasing amount of attention over the last few years in the fields of microbiology, medicine and physics. In this paper we present an approach for automatically classifying complex microorganism motions observed with this microscopy technique. Our main contribution is the use of Hidden Markov Models (HMMs) to classify four different motion patterns of a microorganism and to separate multiple patterns occurring within a trajectory. We perform leave-one-out experiments with the training data to prove the accuracy of our method and to analyze the importance of each trajectory feature for classification. We further present results obtained on four full sequences, a total of 2500 frames. The obtained classification rates range between 83.5% and 100%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ginger, M., Portman, N., McKean, P.: Swimming with protists: perception, motility and flagellum assembly. Nature Reviews Microbiology 6(11), 838–850 (2008)
Stoodley, P., Sauer, K., Davies, D., Costerton, J.: Biofilms as complex differentiated communities. Annual Review of Microbiology 56, 187–209 (2002)
Heydt, M., Rosenhahn, A., Grunze, M., Pettitt, M., Callow, M.E., Callow, J.A.: Digital in-line holography as a 3d tool to study motile marine organisms during their exploration of surfaces. The Journal of Adhesion 83(5), 417–430 (2007)
Frymier, P., Ford, R., Berg, H., Cummings, P.: 3d tracking of motile bacteria near a solid planar surface. Proc. Natl. Acad. Sci. U.S.A. 92(13), 6195–6199 (1995)
Baba, S., Inomata, S., Ooya, M., Mogami, Y., Izumikurotani, A.: 3d recording and measurement of swimming paths of microorganisms with 2 synchronized monochrome cameras. Rev. of Sci. Instruments 62(2), 540–541 (1991)
Weeks, E., Crocker, J., Levitt, A., Schofield, A., Weitz, D.: 3d direct imaging of structural relaxation near the colloidal glass transition. Science 287(5452), 627–631 (2000)
Berg, H.: Random walks in biology. Princeton University Press, Princeton (1993)
Hoyle, D., Rattay, M.: Pca learning for sparse high-dimensional data. Europhysics Letters 62(1) (2003)
Wang, X., Grimson, E.: Trajectory analysis and semantic region modeling using a nonparametric bayesian model. In: CVPR (2008)
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–442 (2004)
Sbalzariniy, I., Theriot, J., Koumoutsakos, P.: Machine learning for biological trajectory classification applications. Center for Turbulence Research, 305–316 (2002)
Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2) (1989)
Chen, M., Kundu, A., Zhou, J.: Off-line handwritten word recognition using a hidden markov model type stochastic network. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 16 (1994)
Nefian, A., Hayes, M.H.: Hidden markov models for face recognition. In: ICASSP (1998)
Yamato, J., Ohya, J., Ishii, K.: Recognizing human action in time-sequential images using hidden markov model. In: CVPR (1992)
Brand, M., Kettnaker, V.: Discovery and segmentation of activities in video. IEEE Trans. Pattern Anal. Mach. Intell (TPAMI) 22(8), 844–851 (2000)
Gabor, D.: A new microscopic principle. Nature 161(8), 777 (1948)
Xu, W., Jericho, M., Meinertzhagen, I., Kreuzer, H.: Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001)
Heydt, M., Divós, P., Grunze, M., Rosenhahn, A.: Analysis of holographic microscopy data to quantitatively investigate three dimensional settlement dynamics of algal zoospores in the vicinity of surfaces. Eur. Phys. J. E (2009)
Lu, J., Fugal, J., Nordsiek, H., Saw, E., Shaw, R., Yang, W.: Lagrangian particle tracking in 3d via single-camera in-line digital holography. New Journal of Physics 10 (2008)
Leal-Taixé, L., Heydt, M., Rosenhahn, A., Rosenhahn, B.: Automatic tracking of swimming microorganisms in 4d digital in-line holography data. In: IEEE WMVC (2009)
Iken, K., Amsler, C., Greer, S., McClintock, J.: Qualitative and quantitative studies of the swimming behaviour of hincksia irregularis (phaeophyceae) spores: ecological implications and parameters for quantitative swimming assays. Phycologia 40, 359–366 (2001)
Fugal, J., Schulz, T., Shaw, R.: Practical methods for automated reconstruction and characterization of particles in digital in-line holograms. Meas. Sci. Technol. 20, 075501 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leal-Taixé, L., Heydt, M., Weiße, S., Rosenhahn, A., Rosenhahn, B. (2010). Classification of Swimming Microorganisms Motion Patterns in 4D Digital In-Line Holography Data. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-15986-2_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15985-5
Online ISBN: 978-3-642-15986-2
eBook Packages: Computer ScienceComputer Science (R0)