Skip to main content

From Box Filtering to Fast Explicit Diffusion

  • Conference paper
Pattern Recognition (DAGM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Included in the following conference series:

  • 2704 Accesses

Abstract

There are two popular ways to implement anisotropic diffusion filters with a diffusion tensor: Explicit finite difference schemes are simple but become inefficient due to severe time step size restrictions, while semi-implicit schemes are more efficient but require to solve large linear systems of equations. In our paper we present a novel class of algorithms that combine the advantages of both worlds: They are based on simple explicit schemes, while being more efficient than semi-implicit approaches. These so-called fast explicit diffusion (FED) schemes perform cycles of explicit schemes with varying time step sizes that may violate the stability restriction in up to 50 percent of all cases. FED schemes can be motivated from a decomposition of box filters in terms of explicit schemes for linear diffusion problems. Experiments demonstrate the advantages of the FED approach for time-dependent (parabolic) image enhancement problems as well as for steady state (elliptic) image compression tasks. In the latter case FED schemes are speeded up substantially by embedding them in a cascadic coarse-to-fine approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  2. Höcker, C., Fehmers, G.: Fast structural interpretation with structure-oriented filtering. Geophysics 68(4), 1286–1293 (2003)

    Article  Google Scholar 

  3. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. Journal of Mathematical Imaging and Vision 31(2-3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  4. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  5. Lu, T., Neittaanmäki, P., Tai, X.C.: A parallel splitting up method and its application to Navier-Stokes equations. Applied Mathematics Letters 4(2), 25–29 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing 7(3), 398–410 (1998)

    Article  Google Scholar 

  7. Drblíková, O., Mikula, K.: Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing. SIAM Journal on Numerical Analysis 46(1), 37–60 (2007)

    Article  MathSciNet  Google Scholar 

  8. Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. Journal of Visual Communication and Image Representation 13(1/2), 103–118 (2002)

    Article  Google Scholar 

  9. Welk, M., Steidl, G., Weickert, J.: Locally analytic schemes: A link between diffusion filtering and wavelet shrinkage. Applied and Computational Harmonic Analysis 24, 195–224 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gentzsch, W., Schlüter, A.: Über ein Einschrittverfahren mit zyklischer Schrittweitenänderung zur Lösung parabolischer Differentialgleichungen. ZAMM, Zeitschrift für Angewandte Mathematik und Mechanik 58, T415–T416 (1978)

    Google Scholar 

  11. Gentzsch, W.: Numerical solution of linear and non-linear parabolic differential equations by a time discretisation of third order accuracy. In: Hirschel, E.H. (ed.) Proceedings of the Third GAMM-Conference on Numerical Methods in Fluid Mechanics, pp. 109–117. Friedr. Vieweg & Sohn (1979)

    Google Scholar 

  12. Alexiades, V., Amiez, G., Gremaud, P.A.: Super-time-stepping acceleration of explicit schemes for parabolic problems. Communications in Numerical Methods in Engineering 12, 31–42 (1996)

    Article  MATH  Google Scholar 

  13. Bornemann, F., Deuflhard, P.: The cascadic multigrid method for elliptic problems. Numerische Mathematik 75, 135–152 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Weickert, J.: Nonlinear diffusion filtering. In: Jähne, B., Haußecker, H., Geißler, P. (eds.) Handbook on Computer Vision and Applications. Signal Processing and Pattern Recognition, vol. 2, pp. 423–450. Academic Press, San Diego (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grewenig, S., Weickert, J., Bruhn, A. (2010). From Box Filtering to Fast Explicit Diffusion. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics