Skip to main content

Automatic Rank Determination in Projective Nonnegative Matrix Factorization

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6365))

Abstract

Projective Nonnegative Matrix Factorization (PNMF) has demonstrated advantages in both sparse feature extraction and clustering. However, PNMF requires users to specify the column rank of the approximative projection matrix, the value of which is unknown beforehand. In this paper, we propose a method called ARDPNMF to automatically determine the column rank in PNMF. Our method is based on automatic relevance determination (ARD) with Jeffrey’s prior. After deriving the multiplicative update rule using the expectation-maximization technique for ARDPNMF, we test it on various synthetic and real-world datasets for feature extraction and clustering applications to show the effectiveness of our algorithm. For FERET faces and the Swimmer dataset, interpretable number of features are obtained correctly via our algorithm. Several UCI datasets for clustering are also tested, in which we find that ARDPNMF can estimate the number of clusters quite accurately with low deviation and good cluster purity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  2. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis. John Wiley, Chichester (2009)

    Google Scholar 

  3. Dhillon, I.S., Sra, S.: Generalized nonnegative matrix approximations with bregman divergences. Advances in Neural Information Processing Systems 18, 283–290 (2006)

    Google Scholar 

  4. Choi, S.: Algorithms for orthogonal nonnegative matrix factorization. In: Proceedings of IEEE International Joint Conference on Neural Networks, pp. 1828–1832 (2008)

    Google Scholar 

  5. Ding, C., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 45–55 (2010)

    Article  Google Scholar 

  6. Yuan, Z., Oja, E.: Projective nonnegative matrix factorization for image compression and feature extraction. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 333–342. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Yang, Z., Yuan, Z., Laaksonen, J.: Projective non-negative matrix factorization with applications to facial image processing. International Journal on Pattern Recognition and Artificial Intelligence 21(8), 1353–1362 (2007)

    Article  Google Scholar 

  8. Yang, Z., Oja, E.: Linear and nonlinear projective nonnegative matrix factorization. IEEE Transaction on Neural Networks 21(5), 734–749 (2010)

    Article  Google Scholar 

  9. Mackay, D.J.C.: Probable networks and plausible predictions – a review of practical bayesian methods for supervised neural networks. Network: Computation in Neural Systems 6(3), 469–505 (1995)

    Article  MATH  Google Scholar 

  10. Bishop, C.M.: Bayesian pca. Advances in Neural Information Processing Systems, 382–388 (1999)

    Google Scholar 

  11. Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tan, V.Y.F., FĂ©votte, C.: Automatic relevance determination in nonnegative matrix factorization. In: Proceedings of 2009 Workshop on Signal Processing with Adaptive Sparse Structured Representations, SPARS 2009 (2009)

    Google Scholar 

  13. Figueiredo, M.A.: Adaptive sparseness for supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1150–1159 (2003)

    Article  Google Scholar 

  14. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? Advances in Neural Information Processing Systems 16, 1141–1148 (2003)

    Google Scholar 

  15. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 1090–1104 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Z., Zhu, Z., Oja, E. (2010). Automatic Rank Determination in Projective Nonnegative Matrix Factorization. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15995-4_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15994-7

  • Online ISBN: 978-3-642-15995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics