Abstract
In this paper, we discuss various dependent component analysis approaches available in the literature and study their performances on the problem of separation of dependent cosmological sources from multichannel microwave radiation maps of the sky. Realisticaly simulated cosmological radiation maps are utilised in the simulations which demonstrate the superior performance obtained by tree-dependent component analysis and correlated component analysis methods when compared to classical ICA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Casey, M.A., Westner, A.: Separation of Mixed Audio Sources By Independent Subspace Analysis. In: Int. Computer Music Conference. U. Michigan Press, Ann Arbor (2000)
Savia, E., Klami, A., Kaski, S.: Fast dependent components for fMRI analysis. In: ICASSP 2009. IEEE Press, New York (2009)
Kim, J.K., Choi, S.: Tree-Dependent Components of Gene Expression Data for Clustering. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 837–846. Springer, Heidelberg (2006)
Hu, W., Dodelson, S.: Cosmic microwave background anisotropies. Annual Reviews Astronomy Astrophysics 40, 171–216 (2002)
Bonaldi, A., Bedini, L., Salerno, E., Baccigalupi, C., De Zotti, G.: Estimating the spectral indices of correlated astrophysical foregrounds by a second-order statistical approach. Monthly Notices of the Royal Astronomical Society 373, 271–279 (2006)
ESA, Planck surveyor homepage, http://www.rssd.esa.int/index.php?project=PLANCK
Cardoso, J.F.: Multidimensional independent component analysis. In: Proc. ICASSP 1998, Seattle, WA (1998)
Hyvarinen, A., Hoyer, P.O., Inki, M.: Topographic Independent Component Analysis. Neural Computation 13(7), 1527–1558 (2001)
Bedini, L., Herranz, D., Salerno, E., Baccigalupi, C., Kuruoglu, E.E., Tonazzini, A.: Separation of correlated astrophysical sources using multiple-lag data covariance matrices. EURASIP J. Applied Signal Processing (15), 2400–2412 (2005)
Bach, F., Jordan, M.: Beyond independent components: trees and clusters. Journal of Machine Learning Research 4(7-8), 1205–1233 (2004)
Baccigalupi, C., et al.: Neural networks and the separation of cosmic microwave background and astrophysical signals in sky maps. Monthly Notices of the Royal Astronomical Society 318, 769–780 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuruoglu, E.E. (2010). Dependent Component Analysis for Cosmology: A Case Study. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_67
Download citation
DOI: https://doi.org/10.1007/978-3-642-15995-4_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15994-7
Online ISBN: 978-3-642-15995-4
eBook Packages: Computer ScienceComputer Science (R0)