Abstract
We present a general framework for computing Voronoi diagrams of different classes of sites under various distance functions in \({\mathbb R}^{2}\). Most diagrams mentioned in the paper are in the plane. However, the framework is sufficiently general to support diagrams embedded on a family of two-dimensional parametric surfaces in three-dimensions. The computation of the diagrams is carried out through the construction of envelopes of surfaces in 3-space provided by Cgal (the Computational Geometry Algorithm Library). The construction of the envelopes follows a divide-and-conquer approach. A straightforward application of the divide-and-conquer approach for Voronoi diagrams yields algorithms that are inefficient in the worst case. We prove that through randomization, the expected running time becomes near-optimal in the worst case. We also show how to apply the new framework and other existing tools from Cgal to compute minimum-width annuli of sets of disks, which requires the computation of two Voronoi diagrams of different types, and of the overlay of the two diagrams. We do not assume general position. Namely, we handle degenerate input, and produce exact results.
Work on this paper has been supported in part by the Hermann Minkowski–Minerva Center for Geometry at Tel-Aviv University. Work by Ophir Setter and Dan Halperin has also been supported in part by the Israel Science Foundation (Grant no. 236/06), and by the German-Israeli Foundation (Grant no. 969/07). Work by Micha Sharir was also partially supported by NSF Grants CCF-05-14079 and CCF-08-30272, by Grant 2006/194 from the U.S.-Israeli Binational Science Foundation, by Grants 155/05 and 338/09 from the Israel Science Fund, Israeli Academy of Sciences, and by a grant from the French-Israeli AFIRST program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of the 16th IEEE Symposium on the Foundations of Computer Science, pp. 151–162 (1975)
Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. John Wiley & Sons, NYC (2000)
Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, J.B. (eds.) Handbook of Computational Geometry, pp. 201–290. Elsevier Science Publishers B.V., North-Holland (2000)
Boissonnat, J.D., Wormser, C., Yvinec, M.: Curved Voronoi diagrams. In: Boissonnat, J.D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces. Springer, Heidelberg (2006)
Barequet, G., Dickerson, M.T., Drysdale, R.L.S.: 2-point site Voronoi diagrams. Discrete Applied Mathematics 122(1-3), 37–54 (2002)
Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)
Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2(1-4), 153–174 (1987)
Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7(1-6), 381–413 (1992)
Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Computational Geometry: Theory and Applications 3(3), 157–184 (1993)
Karavelas, M.I., Yvinec, M.: The Voronoi diagram of planar convex objects. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 337–348. Springer, Heidelberg (2003)
Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Jüttler, B., Pilgerstorfer, E., Rabl, M.: Divide-and-conquer for Voronoi diagrams revisited. In: Proceedings of the 25th Annual ACM Symposium on Computational Geometry (SoCG), pp. 189–197. Association for Computing Machinery (ACM) Press, New York (2009)
Boissonnat, J.D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.: Triangulations in CGAL. Computational Geometry: Theory and Applications 22(1-3), 5–19 (2002)
Emiris, I.Z., Karavelas, M.I.: The predicates of the Apollonius diagram: Algorithmic analysis and implementation. Computational Geometry: Theory and Applications 33(1-2), 18–57 (2006)
Karavelas, M.I.: A robust and efficient implementation for the segment Voronoi diagram. In: Proceedings of the 1st International Symposium on Voronoi Diagrams in Science and Engineering (ISVD), pp. 51–62 (2004)
Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.: Voronoi diagram of ellipses in CGAL. In: Abstracts of the 24th European Workshop on Computational Geometry, pp. 87–90 (2008)
Burnikel, C., Mehlhorn, K., Schirra, S.: How to compute the Voronoi diagram of line segments: Theoretical and experimental results. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 227–239. Springer, Heidelberg (1994)
Held, M.: VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Computational Geometry: Theory and Applications 18(2), 95–123 (2001)
Hoff III, K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: Proceedings of the 26th Annual International Conference on Computer Graphics and Interactive Techniques, pp. 277–286. Association for Computing Machinery (ACM) Press, New York (1999)
Nielsen, F.: An interactive tour of Voronoi diagrams on the GPU. In: ShaderX6: Advanced Rendering Techniques. Charles River Media, Hingham (2008)
Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Discrete & Computational Geometry 1(1), 25–44 (1986)
Meyerovitch, M.: Robust, generic and efficient construction of envelopes of surfaces in three-dimensional space. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 792–803. Springer, Heidelberg (2006)
Meyerovitch, M., Wein, R., Zukerman, B.: 3D Envelopes. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.4th edn. (2008)
Agarwal, P.K., Schwarzkopf, O., Sharir, M.: The overlay of lower envelopes and its applications. Discrete & Computational Geometry 15(1), 1–13 (1996)
Setter, O.: Constructing two-dimensional Voronoi diagrams via divide-and-conquer of envelopes in space. M.Sc. thesis, The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel (May 2009), Electronic version can be found at http://arxiv.org/abs/0906.2760
Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Arrangements on parametric surfaces I: General framework and infrastructure (2010); Accepted for publication in Mathematics in Computer Science
Ebara, H., Fukuyama, N., Nakano, H., Nakanishi, Y.: Roundness algorithms using the Voronoi diagrams. In: Abstracts of the 1st Canadian Conference on Computational Geometry, p. 41 (1989)
Eigenwillig, A., Kerber, M.: Exact and efficient 2D-arrangements of arbitrary algebraic curves. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 122–131. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)
Berberich, E., Emeliyanenko, P.: Cgal’s curved kernel via analysis. ACS Technical Report ACS-TR-123203-04, MPI (2008)
Sugihara, K.: Laguerre Voronoi diagram on the sphere. Journal for Geometry and Graphics 6(1), 69–81 (2002)
Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 251–257 (1984)
Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.Z., Hwang, F.K. (eds.) Computing in Euclidean Geometry, 2nd edn. LNCS, vol. 1, pp. 452–492. World Scientific, Singapore (1995)
Austern, M.H.: Generic Programming and the STL. Addison-Wesley, Reading (1999)
Wein, R., Fogel, E., Zukerman, B., Halperin, D.: 2D arrangements. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.4th edn. (2008)
Sharir, M.: The Clarkson-Shor technique revisited and extended. Combinatorics, Probability & Computing 12(2) (2003)
Guibas, L.J., Seidel, R.: Computing convolutions by reciprocal search. Discrete & Computational Geometry 2(1), 175–193 (1987)
Berberich, E., Fogel, E., Halperin, D., Kerber, M., Setter, O.: Arrangements on parametric surfaces II: Concretization and applications (2010); Accepted for publication in Mathematics in Computer Science
Fogel, E., Setter, O., Halperin, D.: Movie: Arrangements of geodesic arcs on the sphere. In: Proceedings of the 24th Annual ACM Symposium on Computational Geometry (SoCG), pp. 218–219. Association for Computing Machinery (ACM) Press, New York (2008)
Knuth, D.E.: Art of Computer Programming, 2nd edn. Sorting and Searching, vol. 3. Addison-Wesley, Reading (April 1998)
Baccelli, F., Gloaguen, C., Zuyev, S.: Superposition of planar Voronoi tessellations. Stochastic Models 16, 69–98 (2000)
Rivlin, T.J.: Approximating by circles. Computing 21, 93–104 (1979)
Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. International Journal of Computational Geometry and Applications 11(6), 583–616 (2001)
Bose, P., Devroye, L.: Intersections with random geometric objects. Computational Geometry: Theory and Applications 10(3), 139–154 (1998)
Nielsen, F., Boissonnat, J.D., Nock, R.: On Bregman Voronoi diagrams. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 746–755. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)
Onishi, K., Takayama, N.: Construction of Voronoi diagram on the upper half-plane. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 79(4), 533–539 (1996)
Nilforoushan, Z., Mohades, A.: Hyperbolic Voronoi diagram. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3984, pp. 735–742. Springer, Heidelberg (2006)
Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley, Boston (1997)
Myers, N.: “Traits”: A new and useful template technique. In: Lippman, S.B. (ed.) C++ Gems. SIGS Reference Library, vol. 5, pp. 451–458 (1997)
Berberich, E., Kerber, M.: Exact arrangements on tori and Dupin cyclides. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling (SPM), pp. 59–66. Association for Computing Machinery (ACM) Press, New York (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Setter, O., Sharir, M., Halperin, D. (2010). Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space. In: Gavrilova, M.L., Tan, C.J.K., Anton, F. (eds) Transactions on Computational Science IX. Lecture Notes in Computer Science, vol 6290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16007-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-16007-3_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16006-6
Online ISBN: 978-3-642-16007-3
eBook Packages: Computer ScienceComputer Science (R0)