Skip to main content

Protein-Ligand Docking Based on Beta-Shape

  • Chapter
Transactions on Computational Science IX

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6290))

Abstract

Protein-ligand docking is to predict the location and orientation of a ligand with respect to a protein within its binding site, and has been known to be essential for the development of new drugs. The protein-ligand docking problem is usually formulated as an energy minimization problem to identify the docked conformation of the ligand. A ligand usually docks around a depressed region, called a pocket, on the surface of a protein. Presented in this paper is a docking method, called BetaDock, based on the newly developed geometric construct called the β-shape and the β-complex. To cope with the computational intractability, the global minimum of the potential energy function is searched using the genetic algorithm. The proposed algorithm first locates initial chromosomes at some locations within the pocket recognized according to the local shape of the β-shape. Then, the algorithm proceeds generations by taking advantage of powerful properties of the β-shape to achieve an extremely fast and good solution. We claim that the proposed method is much faster than other popular docking softwares including AutoDock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. RCSB Protein Data Bank Homepage (2009), http://www.rcsb.org/pdb/

  2. Voronoi Diagram Research Center (2009), http://voronoi.hanyang.ac.kr/

  3. Agarwal, P.K., Edelsbrunner, H., Harer, J., Wang, Y.: Extreme elevation on a 2-manifold. In: Proceedings of the 20th Annual ACM Symposium on Computational Geometry, Brooklyn, New York, USA, pp. 357–365 (2004)

    Google Scholar 

  4. Baxter, C.A., Murray, C.W., Clark, D.E., Westhead, D.R., Eldridge, M.D.: Flexible docking using tabu search and an empirical estimate of binding affinity. Proteins: Structure, Function, and Genetics 33, 367–382 (1998)

    Article  Google Scholar 

  5. Boissonnat, J.-D., Delage, C.: Convex hull and Voronoi diagram of additively weighted points. In: Brodal, G., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 367–378. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Cho, Y., Kim, D., Kim, D.-S.: Topology representation for the Voronoi diagram of 3D spheres. International Journal of CAD/CAM 5(1), 59–68 (2005), http://www.ijcc.org

    Google Scholar 

  7. Corbeil, C.R., Englebienne, P., Moitessier, N.: Docking ligands into flexible and solvated macromolecules. 1. development and validation of FITTED 1.0. Journal of Chemical Information and Modeling 47, 435–449 (2007)

    Article  Google Scholar 

  8. Delaney, J.S.: Finding and filling protein cavities using cellular logic operations. Journal of Molecular Graphics 10, 174–177 (1992)

    Article  Google Scholar 

  9. Edelsbrunner, H., Facello, M., Liang, J.: On the definition and the construction of pockets in macromolecules. Discrete Applied Mathematics 88, 83–102 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Transactions on Graphics 13(1), 43–72 (1994)

    Article  MATH  Google Scholar 

  11. Heifets, A., Eisenstein, M.: Effect of local shape modifications of molecular surfaces on rigid-body protein-protein docking. Protein Engineering 16(3), 179–185 (2003)

    Article  Google Scholar 

  12. Hendlich, M., Rippmann, F., Barnickel, G.: LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins. Journal of Molecular Graphics & Modeling 15(6), 359–363 (1997)

    Article  Google Scholar 

  13. Ho, C.M., Marshall, G.R.: Cavity search: an algorithm for the isolation and display of cavity-like binding regions. Journal of Computer-Aided Molecular Design 4, 337–354 (1990)

    Article  Google Scholar 

  14. Kim, C.-M., Won, C.-I., Ryu, J., Bhak, J., Kim, D.-S.: Protein-ligand docking based on β-shape. In: Proceeding of the 6th International Symposium on Voronoi Diagrams in Science and Engineering, pp. 245–253 (2009)

    Google Scholar 

  15. Kim, D., Cho, C.-H., Cho, Y., Ryu, J., Bhak, J., Kim, D.-S.: Pocket extraction on proteins via the Voronoi diagram of spheres. Journal of Molecular Graphics and Modelling 26(7), 1104–1112 (2008)

    Article  Google Scholar 

  16. Kim, D., Lee, C., Cho, Y., Kim, D.-S.: Manifoldization of β-shapes by topology operators. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 505–511. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Kim, D.-S., Cho, C.-H., Kim, D., Cho, Y.: Recognition of docking sites on a protein using β-shape based on Voronoi diagram of atoms. Computer-Aided Design 38(5), 431–443 (2006)

    Article  Google Scholar 

  18. Kim, D.-S., Cho, Y., Kim, D.: Edge-tracing algorithm for Euclidean Voronoi diagram of 3D spheres. In: Proceedings of the 16th Canadian Conference on Computational Geometry, pp. 176–179 (2004)

    Google Scholar 

  19. Kim, D.-S., Cho, Y., Kim, D.: Euclidean Voronoi diagram of 3D balls and its computation via tracing edges. Computer-Aided Design 37(13), 1412–1424 (2005)

    Article  Google Scholar 

  20. Kim, D.-S., Cho, Y., Kim, D., Kim, S., Bhak, J., Lee, S.-H.: Euclidean Voronoi diagrams of 3D spheres and applications to protein structure analysis. Japan Journal of Industrial and Applied Mathematics 22(2), 251–265 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kim, D.-S., Kim, D., Cho, Y., Sugihara, K.: Quasi-triangulation and interworld data structure in three dimensions. Computer-Aided Design 38(7), 808–819 (2006)

    Article  Google Scholar 

  22. Kim, D.-S., Lee, C., Cho, Y., Kim, D.: Manifoldization of β-shapes on o(n) time. Computer-Aided Design 42(4), 322–339 (2010)

    Article  Google Scholar 

  23. Kim, D.-S., Seo, J., Kim, D., Ryu, J., Cho, C.-H.: Three-dimensional beta shapes. Computer-Aided Design 38(11), 1179–1191 (2006)

    Article  Google Scholar 

  24. Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature 3, 935–949 (2004)

    Article  Google Scholar 

  25. Kollman, P.: Free energy calculations: Applications to chemical and biochemical phenomena. Chemical Reviews 93, 2395–2417 (1993)

    Article  Google Scholar 

  26. Kuntz, I.D.: Structure-based strategies for drug design and discovery. Science 257(21), 1078–1082 (1992)

    Article  Google Scholar 

  27. Kuntz, I.D., Blaney, F.M., Oatley, S.J.: A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology 161, 269–288 (1982)

    Article  Google Scholar 

  28. Liang, J., Edelsbrunner, H., Woodward, C.: Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Science 7(9), 1884–1897 (1998)

    Article  Google Scholar 

  29. McLachlan, A.: A mathematical procedure for superimposing atomic coordinates of proteins. Acta Crystallographica Section A 28(6), 656–657 (1972)

    Article  Google Scholar 

  30. Medvedev, N.N., Voloshin, V.P., Luchnikov, V.A., Gavrilova, M.L.: An algorithm for three-dimensional Voronoi S-network. Journal of Computational Chemistry 27(14), 1676–1692 (2006)

    Article  Google Scholar 

  31. Mendez, R., Leplae, R., Maria, L.D., Wodak, S.J.: Assessment of blind predictions of protein-protein interactions: Current status of docking methods. Proteins: Structure, Function, and Bioinformatics 52, 51–67 (2003)

    Article  Google Scholar 

  32. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19(14), 1622–1639 (1998)

    Article  Google Scholar 

  33. Moustakas, D.T., Lang, P.T., Pegg, S., Pettersen, E., Kuntz, I.D., Brooijmans, N., Rizzo, R.C.: Development and validation of a modular, extensible docking program: DOCK 5. Journal of Computer-Aided Molecular Design 20, 601–619 (2006)

    Article  Google Scholar 

  34. Pei, J., Wang, Q., Liu, Z., Li, Q., Yang, K., Lai, L.: PSI-DOCK: Towards highly efficient and accurate flexible ligand docking. Proteins: Structure, Function, and Bioinformatics 62, 934–946 (2006)

    Article  Google Scholar 

  35. Peters, K.P., Fauck, J., Frömmel, C.: The automatic search for ligand binding sites in protein of known three dimensional structure using only geometric criteria. Journal of Molecular Biology 256, 201–213 (1996)

    Article  Google Scholar 

  36. Ryu, J., Park, R., Kim, D.-S.: Molecular surfaces on proteins via beta shapes. Computer-Aided Design 39(12), 1042–1057 (2007)

    Article  Google Scholar 

  37. Seo, J., Cho, Y., Kim, D., Kim, D.-S.: An efficient algorithm for three-dimensional β-complex and β-shape via a quasi-triangulation. In: Proceedings of the ACM Symposium on Solid and Physical Modeling, June 2007, pp. 323–328 (2007)

    Google Scholar 

  38. Shoichet, B.K., Kuntzt, I.D.: Protein docking and complementarity. Journal of Molecular Biology 221, 327–346 (1991)

    Article  Google Scholar 

  39. Smith, G.R., Sternberg, M.J.: Prediction of protein-protein interactions by docking methods. Current Opinion in Structural Biology 12, 28–35 (2002)

    Article  Google Scholar 

  40. Sousa, S.F., Fernandes, P.A., Ramos, M.J.: Protein-ligand docking: Current status and future challenges. Proteins: Structure, Function, and Bioinformatics 65, 15–26 (2006)

    Article  Google Scholar 

  41. Voorintholt, R., Kosters, M.T., Vegter, G., Vriend, G., Hol, W.G.: A very fast program for visualizing protein surfaces, channels and cavities. Journal of Molecular Graphics 7(4), 243–245 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, CM., Won, CI., Kim, JK., Ryu, J., Bhak, J., Kim, DS. (2010). Protein-Ligand Docking Based on Beta-Shape. In: Gavrilova, M.L., Tan, C.J.K., Anton, F. (eds) Transactions on Computational Science IX. Lecture Notes in Computer Science, vol 6290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16007-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16007-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16006-6

  • Online ISBN: 978-3-642-16007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics