Skip to main content

A Hybrid Metaheuristic for the Longest Common Subsequence Problem

  • Conference paper
Hybrid Metaheuristics (HM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6373))

Included in the following conference series:

  • 1671 Accesses

Abstract

The longest common subsequence problem is a classical string problem. It has applications, for example, in pattern recognition and bioinformatics. This contribution proposes an integrative hybrid metaheuristic for this problem. More specifically, we propose a variable neighborhood search that applies an iterated greedy algorithm in the improvement phase and generates the starting solutions by invoking either beam search or a greedy randomized procedure. The main motivation of this work is the lack of fast neighborhood search methods for the tackled problem. The benefits of the proposal in comparison to the state of the art are experimentally shown.

This work was supported by the Research Projects TIN2008-05854, P08-TIC-4173, and by grant TIN2007-66523 (FORMALISM) of the Spanish government. In addition, Christian Blum acknowledges support from the Ramón y Cajal program of the Spanish government of which he is a research fellow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Storer, J.: Data Compression: Methods and Theory. Computer Science Press, MD (1988)

    Google Scholar 

  2. Lu, S.Y., Fu, K.S.: A sentence-to-sentence clustering procedure for pattern analysis. IEEE Transactions on Systems, Man and Cybernetics 8(5), 381–389 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aho, A., Hopcroft, J., Ullman, J.: Data structures and algorithms. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  4. Sankoff, D., Kruskal, J.B.: Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  5. Sellis, T.: Multiple query optimization. ACM Transactions on Database Systems 13(1), 23–52 (1988)

    Article  Google Scholar 

  6. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA structures. Journal of Computational Biology 9(2), 371–388 (2002)

    Article  Google Scholar 

  7. Brisk, P., Kaplan, A., Sarrafzadeh, M.: Area-efficient instruction set synthesis for reconfigurable system-on-chip design. In: Proceedings of the 41st Design Automation Conference, pp. 395–400. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  8. Maier, D.: The complexity of some problems on subsequences and supersequences. Journal of the ACM 25, 322–336 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proceedings of SPIRE 2000 – 7th International Symposium on String Processing and Information Retrieval, pp. 39–48. IEEE press, Los Alamitos (2000)

    Chapter  Google Scholar 

  10. Shyu, S.J., Tsai, C.Y.: Finding the longest common subsequence for multiple biological sequences by ant colony optimization. Computers & Operations Research 36(1), 73–91 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Easton, T., Singireddy, A.: A large neighborhood search heuristic for the longest common subsequence problem. Journal of Heuristics 14(3), 271–283 (2008)

    Article  MATH  Google Scholar 

  12. Julstrom, B.A., Hinkemeyer, B.: Starting from scratch: Growing longest common subsequences with evolution. In: Runarsson, T.P., Beyer, H.G., Burke, E.K., Merelo Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 930–938. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Fraser, C.B.: Subsequences and supersequences of strings. PhD thesis, University of Glasgow (1995)

    Google Scholar 

  14. Huang, K., Yang, C., Tseng, K.: Fast algorithms for finding the common subsequences of multiple sequences. In: Proceedings of the International Computer Symposium, pp. 1006–1011. IEEE press, Los Alamitos (2004)

    Google Scholar 

  15. Blum, C., Blesa, M.J., López Ibáñez, M.: Beam search for the longest common subsequence problem. Computers & Operations Research 36(12), 3178–3186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Blum, C.: Hybrid Metaheuristics – Guest Editorial. Computers & Operations Research 37(3), 430–431 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–565 (2002)

    Article  Google Scholar 

  18. Raidl, G.R.: A unified view on hybrid metaheuristics. In: Almeida, F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez, M.P., Roli, A., Sampels, M. (eds.) HM 2006. LNCS, vol. 4030, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130, 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Culberson, J., Luo, F.: Exploring the k-colorable landscape with iterated greedy. In: Cliques, coloring, and satisfiability: Second DIMACS implementation challenge, pp. 245–284. American Mathematical Society, Providence (1996)

    Chapter  Google Scholar 

  21. Jacobs, L.W., Brusco, M.J.: A local-search heuristic for large set-covering problems. Naval Research Logistics 42, 1129–1140 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruiz, R., Stützle, T.: An iterated greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives. European Journal of Operational Research 187, 1143–1159 (2008)

    Article  MATH  Google Scholar 

  23. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal of Production Research 26, 297–307 (1988)

    Article  Google Scholar 

  24. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Blum, C., Blesa, M.J., López-Ibáñez, M.: Beam search for the longest common subsequence problem. Technical Report LSI-08-29, Department LSI, Univeristat Politècnica de Catalunya (2008)

    Google Scholar 

  26. Blum, C.: Beam-ACO—Hybridizing ant colony optimization with beam search: An application to open shop scheduling. Computers & Operations Research 32(6), 1565–1591 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lozano, M., Blum, C. (2010). A Hybrid Metaheuristic for the Longest Common Subsequence Problem. In: Blesa, M.J., Blum, C., Raidl, G., Roli, A., Sampels, M. (eds) Hybrid Metaheuristics. HM 2010. Lecture Notes in Computer Science, vol 6373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16054-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16054-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16053-0

  • Online ISBN: 978-3-642-16054-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics