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Abstract. We introduce a calculus with mobile names, distributed prin-
cipals and primitives for secure remote communication, without any ref-
erence to explicit cryptography. The calculus is equipped with a system
of types and effects providing static guarantees of secrecy and authentic-
ity in the presence of a Dolev-Yao intruder. The novelty with respect to
existing type systems for security is in the structure of our secrecy and
authenticity types, which are inspired by the formulas of BAN Logic,
and retain much of the simplicity and intuitive reading of such formulas.
Drawing on these types, the type system makes it possible to character-
ize authenticity directly as a property of the data exchanged during a
protocol rather than indirectly by extracting and interpreting the effects
the protocol has on that data.

1 Introduction

Distributed protocols draw on cryptographic constructs to protect the secrecy
and integrity of sensitive data against any potential attack. When designing dis-
tributed applications, however, it is often convenient to rely on more abstract,
structured primitives for secure remote messaging and let a compiler automat-
ically build defensive implementations on top of the underlying cryptographic
infrastructure.

Following an increasingly popular approach in the specification of distributed
systems, in [7, 6] the first author and Focardi isolated a core set of security ab-
stractions for programming distributed protocols, and showed them effective
both for high-level protocol design and for security analysis in adversarial set-
tings. In the present paper, we further investigate the effectiveness of that ap-
proach by developing a typed version of the abstractions.

We introduce a variant of the calculus in [6], that features mobile names,
distributed principals and primitives for secure remote communication, without
any reference to explicit cryptography. The calculus is equipped with a system
of types and effects which disciplines the use of the messaging abstractions to
provide static guarantees of strong secrecy and strong authenticity in the pres-
ence of a Dolev-Yao intruder. Strong secrecy is formalized in terms of behavioral
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equivalence in the style of Abadi’s seminal work [1]. Authenticity, in turn, is
proved by establishing a form of injective agreement between statements and
expectations in the style of [13].

The novelty with respect to existing security type systems is in the choice of
our secrecy and authenticity types. Specifically, the type system makes it possible
to characterize authenticity directly as a property of the data exchanged during
a protocol rather than indirectly by extracting and interpreting the effects the
protocol has on that data. Our types are inspired by the formulas of BAN Logic
[8], and retain much of the simplicity and intuitive reading of such formulas;
their use for type-checking similarly inherits the declarative style of BAN Logic’s
deductive system. The simple structure of the types, and the relative ease of
type-checking also derive from the high-level nature of the underlying process
calculus and its messaging primitives, that encapsulate and abstract away all
cryptographic details. To illustrate, we may write a principal specification of the
form1:

receive (x : From(p)) on a.P

to mean that we expect a piece of data on channel a from principal p, and be
guaranteed statically that, in all protocol runs to which this principal partici-
pates, any piece of data received on a at this step does indeed come from p.

In spite of their simplicity, the calculus and the type system are rather ex-
pressive and support a wide range of distributed protocol idioms. We exemplify
the practical effectiveness of our approach by showing the type system at work
on the security analysis of a variant of the 2KP e-payment protocol [5].

Plan. §2 presents the calculus, §3 the system of types and effects. §4 details the
secrecy and authenticity properties enforced by the system. §5 presents the e-
payment protocol case study, and §6 concludes the presentation. We omit proofs
for lack of space (see [9] for details).

2 The Calculus

Syntax. We presuppose three countable sets of disjoint symbols, for princi-
pal identities p, q, r, (channel) names a, b, c and variables w, x, y, z. We let m,n
range over all names and u, v over names or variables when the distinctions are
immaterial. Tuples are indicated by a tilde, as in ñ, x̃, ṽ.

The calculus is a variant of the calculus from [7], where we structure the
syntax in two layers, for networks and processes, and introduce the explicit
network form pJP K to note the process P running on behalf of the principal
identity p.

Networks M,N,O ::= pJP K (Principal)
| M |N (Parallel)
| (νa : τ)M (Restriction)
| 0 (Empty)

1 The actual syntax of our calculus is different from the one used in this illustrative
example.



Processes P,Q,R ::= u@v〈∗ : ũ〉◦ (Output)
| a(u : x̃)◦.P (Input)
| 0 (Inaction)
| P |Q (Parallel)
| test(u = v) then P else Q (Choice, test∈ {if,check})
| rec X.P (Recursion)
| X (Recursion Var)
| (νa : τ)P (Restriction)

The null, parallel composition, and recursive forms are just as in the pi-calculus.
Conditionals are also like pi-calculus matching: for typing purposes, however, we
use a special syntax to express the matching that corresponds to nonce-checks.
The restriction operators (both for processes and networks) have the familiar
pi-calculus syntax, but weaker scoping rules (see below); they are annotated
with tagged types to be described in § 3. As to input/output, we have various
messaging forms, depending on the instantiation of ∗, u and ◦. The notation ∗
stands for ∗ or ’−’ (u similarly abbreviates u or ’−’), where ’−’ can be interpreted
as an anonymous identity; instead, ◦ is short for • or the empty string ε. The
intuitive reading is as follows: u@v〈∗ : ũ〉◦ denotes an output on channel u
directed to principal v with payload ũ; the payload is certified as originating
from the sender if ∗ is ∗, and it is secret for the receiver v if ◦ is •. Dually,
a(u : x̃)◦.P denotes an input on a from principal u of the payload x̃. As we
detail below, input and output must agree on the secrecy and authenticity tags
to synchronize. Note, finally, that the subject of an input must be a channel (not
a variable): like in the local pi-calculus [18], we thus disallow the transmission of
the input capability on any channel. The notions of free and bound names and
variables arise as expected.

Semantics. We formalize the semantics of networks via a labelled transition
system. Following [2] (and the MIM semantics of [6]) in our transition system
two principals can never synchronize directly; rather, every interaction requires
the mediation of the intruder, which intercepts each message exchaged and then
delivers it to the recipient whe the recipient is ready to consume it. To formalize
the dynamics of message interception, we extend the syntax of networks with an
additional, run-time process form to represent the copies of the messages stored
(or cached) upon interception:

M,N ::= . . . as above . . . | c@q〈p : m̃‖ñ〉◦i
Each intercepted output is cached at a fresh index i which is generated upon
interception and remains available as a reference to the cached output. The
cached output exhibits two views of the message content: the actual payload m̃,
and the view of the payload ñ as available to an external observer. As we discuss
below, the two views differ when the intercepted output bears the secrecy tag
◦ = •.



Table 1 Labelled Transition System

(Input)

σ = {m̃/x̃}

pJc(q : x̃)◦.P K
c@p(q:m̃)◦

−−−−−−−→ pJPσK

(Plain Output)

p 6= q, p = p iff ∗ = ∗, i fresh

pJc@q〈∗ : m̃〉K
(i)c@q〈p:m̃〉i−−−−−−−−→ c@q〈p : m̃‖m̃〉i

(Secret Output)

p 6= q, p = p iff ∗ = ∗, |ñ| = |m̃|, i, ñ fresh

pJc@q〈∗ : m̃〉•K
(i,ñ:Public)c@q〈p:ñ〉•i−−−−−−−−−−−−−−→ c@q〈p : m̃‖ñ〉•i

(Open Process)

(νa : τ)pJP K α−→ N

pJ(νa : τ)P K α−→ N

(Open Network)

N
(i,b̃:τ̃)c@q〈p:m̃〉◦i−−−−−−−−−−−→ N ′, a ∈ {m̃, c} \ {b̃, i}

(νa : τ)N
(i,b̃:τ̃ ,a:τ)c@q〈p:m̃〉◦i−−−−−−−−−−−−−→ N ′

(Forward)

N ≡ (νã : τ̃)(N̂ |c@q〈p : m̃‖ñ〉◦i ), N̂
c@q(p:m̃)◦−−−−−−−→ N ′

N
(i)−−→ (νã : τ̃)N ′

(Replay)

N ≡ (νã : τ̃)(N̂ |c@q〈− : m̃‖ñ〉◦i ), N̂
c@q(−:m̃)◦−−−−−−−→ N ′

N
(i)−−→ (νã : τ̃)(N ′|c@q〈− : m̃‖ñ〉◦i )

(Test True)

pJP K α−→ pJRK

pJtest (m = m) then P else QK α−→ pJRK

(Test False)

pJQK α−→ pJRK, m 6= n

pJtest (m = n) then P else QK α−→ pJRK

(Recursion)

pJP{rec X.P/X}K α−→ pJP ′K

pJrec X.P K α−→ pJP ′K

(New)

N
α−→ N ′, a /∈ n(α)

(νa : τ)N
α−→ (νa : τ)N ′

(Parallel Process)

pJP K|pJQK α−→ N

pJP |QK α−→ N

(Parallel Network)

M
α−→M ′, bn(α) ∩ fn(N) = ∅

M |N,N |M α−→M ′|N,N |M ′



The labelled transitions are collected in Table 1. We comment on the in-
put/output and replay/forward rules, the remaining rules are standard. The
(Input) rule allows a principal to input values from the network and proceed af-
ter propagating the bindings for the input variables to the continuation process.
The (Output) rules formalize the interplay between output and interception. An
output generates a label and caches a copy of the intercepted message at a fresh
index. The label shows the view of the output available to an observer, while
the cached copy holds both the internal and the external view of the payload.
If the output is plain, the two views coincide; if it is secret, the external view is
a tuple ñ of fresh names: as discussed in [7], this corresponds to assume an im-
plementation of a secret output in terms of randomized encryption. The (Open)
rules implement the scope extrusion mechanisms: notice that channel names are
always extruded in an output. All bound names (bar the intercept indexes) in
the output labels come with associated type annotations: these bear no com-
putational/observational meaning, and are only convenient when we formalize
the properties of the type system. The (Replay) and (Forward) rules allow two
principal to synchronize via the intruder by transmitting the cached outputs to
their intended receivers. If the original output was certified, the cached copy
gets consumed when used; non-certified outputs, instead, may be replayed back
to an input-ready principal any number of times. It is worth noticing that pri-
vate (restricted) names exchanged via a secret output are never exposed to an
observer, unless of course the receiver leaks them. To see that, notice that the
exchange arises as a result of a (Secret Output) transition, which does not expose
the private names of its payload, followed by a (Replay)/(Forward) transition,
which only exhibits the index of the intercepted message. The secret exchange
of restricted names is still possible, and achieved in (Forward) and (Reply), re-
lying on structural congruence for scope extrusion. The definition of structural
congruence is standard, and omitted for brevity.

3 The Type System

Types, effects and type environments. The type system is built around
types (T,U, V ) and effects (E,F ), both assigned to values and variables. The
structure and intuitive reading of types is as follows:

– Public: values that are known or can be leaked publicly;
– Secret(ũ): values that must be kept secret among the principals in ũ;
– Any : values with unknown status, might be either Public or Secret ;
– Chan〈T̃ ; Ũ〉: channels with payload a tuple of type T̃ , Ũ ;
– Prin: principal identities.

When occurring in a type (and later in an effect), the notation ũ indicates a set
rather than a tuple. In a channel type Chan〈T̃ ; Ũ〉, we assume that each U ∈ Ũ
is a Secret type, while each T ∈ T̃ is a type other than Secret. Secret types allow
us to define groups of secrecy (much in the spirit of the work in [10]) and these,
in turn, will be instrumental in deriving authenticity judgements. Any plays the



Table 2 Types and environments formation
(Good Type)

Γ ;∆ ` �, τ consistent, fn(τ) ∪ fv(τ) ⊆ dom(Γ ) ∪ dom(∆)

Γ ;∆ ` τ

(Empty)

∅; ∅ ` �

(Type)

Γ ;∆ ` T, u /∈ dom(Γ )

Γ, u : T ;∆ ` �

(Effect)

Γ ;∆ ` Ẽ, u /∈ dom(∆)

Γ ;∆,u : Ẽ ` �

same role as in [1]: values with this type must be protected as secrets, but cannot
be used as secrets, because they might in fact be public.

As to effects, their purpose is to encode time-dependent information about
values: as such, unlike types, they are not invariant through reduction. Their
syntax and intuitive reading is as follows:

– Fromp(ũ): values received by p coming from any of the principals ũ;
– Freshp(ũ): fresh values received by p coming from any of the principals ũ;
– Withp(ũ): values received by p in a message with payload ũ;
– Nonce(p) and Checked(p): nonces created/checked2 by p.

The effects From, Fresh and With are only associated with variables (not names
or identities), as they express properties that pertain to the transmission of a
name (hence to the variable where the name gets received) rather than to the
name itself. The effects Nonce and Checked, in turn, help to single out the steps
of nonce verification.

A type T and a set of effects Ẽ can be composed to form what we call
a tagged type, noted T/Ẽ. We let τ range over tagged types, and use T and
T/∅ interchangeably, as we do for Ẽ and Any/Ẽ. Also, we let τ.T and τ.E de-
note the type and effect components of a tagged type, respectively. Through-
out, we assume that the effect sets in a tagged type are consistent, that is
they do not contain more that one Nonce and/or Checked element. Further,
we introduce the following notion of generative types, i.e., of types that may
legally be associated with fresh names: T/Ẽ is generative for a principal p iff
T ∈ {Public, Secret(ũ), Chan〈Ũ ; Ṽ 〉} and Ẽ ⊆ {Nonce(p)}; τ is generative for
a network M iff M ≡ (νã : τ̃)(pJP K |M ′) and τ is generative for p.

The type system derives various forms of typing and subtyping judgements.
The type environments for these judgements consist of two components, Γ and
∆, mapping names and variables to types and (sets of) effects, respectively. All
environments occurring in a typing judgement must be well-formed, according to
the rules in Table 2. We make the implicit assumption that the effects associated
with a variable do not include Nonce elements, and dually, that the effects given

2 Although, strictly speaking, Nonce and Checked are not time-dependent, it is tech-
nically convenient to treat them as effects.



Table 3 Ordering on types and effects

(IdPublic)

Prin ≤ Public

(ChanPublic)

Chan〈T̃ ; Ũ〉 ≤ Public

(FreshFrom)

Freshp(ṽ) ≤ Fromp(ṽ)

(NonceChecked)

Nonce(p) ≤ Checked(p)

(ContraWith)

ũ ⊆ ṽ

Withp(ṽ) ≤Withp(ũ)

(CoFresh)

ṽ ⊆ ũ

F reshp(ṽ) ≤ Freshp(ũ)

(CoFrom)

ṽ ⊆ ũ

F romp(ṽ) ≤ Fromp(ũ)

(EffectSet)

∀F∈F̃ . ∃E∈Ẽ. E ≤ F

Ẽ ≤ F̃

to names only include Nonce and Checked elements. We use the notation ṽ : τ̃
for v1 : τ1, . . . , vn : τn and ṽ : τ for v1 : τ, . . . , vn : τ . In addition, we introduce
the following notation to single out various components of a type environment:

Nonces(Γ ;∆) = {n | Γ ;∆ ` n : Nonce(p)}
Secrets(Γ ;∆) = {a | Γ ;∆ ` a : Secret(ũ)}.

Ordering on types and effects. Types and effects are organized in the pre-
order relation defined by the rules in Table 3. Rules (IdPublic) and (ChanPublic)
imply that trusted identities are public, and so are channel names, which indeed
are always leaked upon output. Rule (FreshFrom) states that Freshp(ṽ) has
stronger authenticity guarantees than Fromp(ṽ). Rule (NonceChecked) states
that a new nonce can safely be promoted to the status “checked”: this is sound,
as in our our system the effect Nonce may only be assigned to names, not to
variables. The pre-order on effects is lifted to sets of effects using the standard
upper powerset (or Egli-Milner) construction: the resulting relation is still a
pre-order with set union as (total) meet operator. The remaining rules in the
table are self-explanatory. In addition, we define Any as the top element of the
pre-order (on types) and stipulate that T/Ẽ ≤ T ′/Ẽ′ iff T ≤ T ′ and Ẽ ≤ Ẽ′.
Finally, we let τ = τ ′ if and only if τ ≤ τ ′ and τ ′ ≤ τ .

Typing of values. The typing rules for values are collected in Table 4. The
(Domain) and (Subsumption) rules are standard, and (Tag) is self-explanatory.
The two correlation rules are inspired by BAN Logic [8]: (Correlation Fresh)
states that if y is a nonce checked by p, then any name received by p with y
must be fresh; (Correlation From) states that if y is a shared secret between p
and ũ, then any name received by p with y must come from a principal in ũ.
The (Combine) rule is used to gather the information inferred by the correlation
rules.



Table 4 Typing of values

(Domain)

Γ ;∆ ` �, Γ (u) = τ ∨∆(u) = τ

Γ ;∆ ` u : τ

(Subsumption)

Γ ;∆ ` u : τ, τ ≤ τ ′, Γ ;∆ ` τ ′

Γ ;∆ ` u : τ ′

(Tag)

Γ ; ∅ ` u : T, ∅;∆ ` u : Ẽ

Γ ;∆ ` u : T/Ẽ

(Correlation Fresh)

Γ ;∆ ` y : Checked(p), Γ ;∆ ` x : Withp(y)

Γ ;∆ ` x : Freshp

(Combine)

Γ ;∆ ` x : Freshp, Γ ;∆ ` x : Fromp(ũ)

Γ ;∆ ` x : Freshp(ũ)

(Correlation From)

Γ ;∆ ` y : Secret(p, ũ), Γ ;∆ ` x : Withp(y)

Γ ;∆ ` x : Fromp(ũ)

Typing of processes. Processes are always type-checked with respect to a
principal identity. The typing judgement for processes has the form Γ ;∆ `p P ,
where p is intended to be the identity of the principal running P . We start
illustrating the typing of processes with the rules for input/output in Table 5.

Rule (Public Output) governs the communication of public values, which is
legal provided that the type of the payload is consistent with the type expected
by the channel. Note that the output can be either plain or secret. The (Secret
Output) rule requires both the sender and the receiver to be part of the secrecy
group declared for each secret included in the message.

As for input, in all rules the continuation process is type-checked against an
environment that stores the interdependence of each input variable with all the
remaining components of the message received. If the sender is unknown, the
payload type declared by the channel is ignored, as the message may come from
the intruder. In absence of adequate guarantees about the sender, the input
variables associated to public positions can be safely treated as public, while
those associated to secret positions must be given type Any (as they might be
secret, if the sender is well-typed, or anything when the sender is untyped). On
the other hand, if the sender of a message is a known principal, the receiver can
trust the payload type of the channel.

The last two rules in Table 5 involve the conditional forms. Following [15],
the (If) rule exploits the equality between u and v to refine the types of the two
values in the typing for the then branch. The notation Γ u u : V indicates the
environment Γ, u : V if u /∈ dom(Γ ), otherwise the environment Γ \ {u : U}, u :
U u V , where u is the partial meet operator on types. Notice that we only
refine the types of u and v and not their effects, as refining the effects would be
unsound. To illustrate, given the assumption u : Fromp(q), associating the same
effect to v would be unsound, as v might come from another principal r, even
though u = v. The (Check) rule implements a nonce verification mechanism, and



Table 5 Typing of processes: input/output and conditionals

(Public Output)

Γ ;∆ ` u : Chan〈T̃ ; ∅〉, Γ ;∆ ` ũ : T̃ , Γ ;∆ ` v : Prin

Γ ;∆ `p u@v〈∗ : ũ〉◦

(Secret Output)

Γ ;∆ ` u : Chan〈T̃ ; Ũ〉, ∀i (Ui = Secret(ṽi) ∧ p, v ∈ ṽi),
Γ ;∆ ` ũ : (T̃ , Ũ), Γ ;∆ ` v : Prin

Γ ;∆ `p u@v〈∗ : ũ〉•

(Non-certified Input)

Γ ;∆ ` a : Chan〈T̃ ; Ũ〉, |x̃| = |T̃ | ∧ |ỹ| = |Ũ |,
Γ, x̃ : Public, ỹ : Any;∆, x̃ : Withp(x̃, ỹ), ỹ : Withp(x̃, ỹ) `p P

Γ ;∆ `p a(− : x̃, ỹ)◦.P

(Trusted Input)

Γ ;∆ ` a : Chan〈T̃ ; Ũ〉, Γ ;∆ ` u : Prin, |x̃| = |T̃ | ∧ |ỹ| = |Ũ |,
Γ, x̃ : T̃ , ỹ : Ũ ; ∆, x̃ : {Freshp(u),Withp(x̃, ỹ)}, ỹ : {Freshp(u),Withp(x̃, ỹ)} `p P

Γ ;∆ `p a(u : x̃, ỹ)◦.P

(If)

Γ ; ∅ ` u : U, Γ ; ∅ ` v : V, Γ u u : V u v : U ;∆ `p P, Γ ;∆ `p Q

Γ ;∆ `p if (u = v) then P else Q

(Check)

∆(n) = Nonce(p), Γ ; ∅ ` u : U, Γ ; ∅ ` n : V,
Γ u u : V u n : U ; (∆ u u : Checked(p))[n : Checked(p)] `p P Γ ;∆ `p Q

Γ ;∆ `p check (u = n) then P else Q

involves two operations on the effect environment ∆: ∆uu : Ẽ is defined similarly
to Γ u u : U , whereas ∆[n : Ẽ] changes the current association of n to Ẽ. The
intuition underlying nonce verification is the following: consider the process c(− :
x, y).check (x = n) then P else Q, run by the principal p, where n has the effect
Nonce(p). Then, the continuation P is type-checked in an environment where
n’s effect is consumed, and turned to Checked(p), and x is deemed Checked(p).
Now, since y : With(x, y), we can infer y : Freshp.

The remaining rules for processes and networks are reported in Table 6.
The (Parallel) rule splits the ∆ part of the environment between the parallel
processes P and Q to avoid that the same nonce is checked by both P and Q; the
disjoint union ∆1]∆2 indicates the environment ∆1u∆2 in case Nonces(∆1)∩
Nonces(∆2) = ∅, and is undefined otherwise. The condition Nonce(Γ ;∆) = ∅



Table 6 Other typing rules of processes and networks

(New)

Γ, a : T ;∆′ `p P, T/Ẽ generative for p, [∆′ = if Ẽ 6= ∅ then (∆, a : Ẽ) else ∆]

Γ ;∆ `p (νa : T/Ẽ)P

(Parallel)

Γ ;∆1 `p P, Γ ;∆2 `p Q

Γ ;∆1 ]∆2 `p P |Q

(Recursion)

Nonces(Γ ;∆) = ∅, Γ,X : Proc;∆ `p P

Γ ;∆ `p rec X.P

(Principal)

Γ ;∆ `p P

Γ ;∆ ` pJP K

(Cache)

Γ ;∆ ` �

Γ ;∆ ` c@q〈p : m̃‖ñ〉◦i

(Network Parallel)

Γ ;∆1 `M, Γ ;∆2 ` N

Γ ;∆1 ]∆2 `M |N

(Zero)

Γ ;∆ ` �

Γ ;∆ `p 0

(Proc)

Γ ;∆ ` X : Proc

Γ ;∆ `p X

(Network Zero)

Γ ;∆ ` �

Γ ;∆ ` 0

(Network New)

Γ, a : T ;∆′ `M, T/Ẽgenerative for M, [∆′ = if Ẽ 6= ∅ then (∆, a : Ẽ) else ∆]

Γ ;∆ ` (νa : T/Ẽ)M

in (Recursion) similarly ensures that a nonce is never checked more than once:
it is necessary since the body of a recursive process can be instantiated multiple
times, but it is type-checked only once [17]. In the (New) rules we restrict the
possible types for new names to generative tagged types to control the way new
names are introduced at run-time. The remaining rules are fairly standard.

4 Properties of the Type System

We start our analysis of the type system properties with subject reduction.

4.1 Subject Reduction

This is a standard result, but its formulation in our type system is more elab-
orate than usual, due to the structure of our types and effects and our LTS
characterization of the operational semantics.

Substitution. As we already said, types are preserved during computation,
while effects are not. In particular, the authenticity effects From, Fresh and



With associated with an input variable are not preserved by the substitution of
that variable with the name received.

This is reflected in the following formulation of the substitution lemma, which
as usual is crucial in the proof of subject reduction. Given a set of effects Ẽ, let
|Ẽ| denote the effect-erasure of E, that is the subset of E resulting from erasing
all occurrences of the effects From, Fresh and With from Ẽ.

Lemma 1 (Substitution).

(i) If Γ, x : T u Γ ′;∆,x : Ẽ u∆′ ` u : U/F̃ and Γ ;∆ ` n : T/|Ẽ|, then
Γ u Γ ′{n/x};∆ u∆′{n/x} ` u{n/x} : (U/|F̃ |){n/x};

(ii) If Γ, x : T u Γ ′;∆,x : Ẽ u∆′ `p P and Γ ;∆ ` n : T/|Ẽ|, then
Γ u Γ ′{n/x};∆ u∆′{n/x} `p P{n/x}.

Based on this result, we may show that typing is preserved by each of the tran-
sitions in our LTS. Since some of the transitions may introduce fresh names,
typing the derivative of a transition requires a new type environment that de-
pends on the transition itself. We use the notation (Γ ;∆) after α to refer to
such environments. Given a judgement Γ ;∆ ` M and a transition M

α−→ M ′,
the environment (Γ ;∆) after α has a straightforward, but lengthy definition3

(cf. Appendix A). To illustrate, assume Γ ;∆ ` M and consider a transition

M
c@p(−:m̃,ñ)−−−−−−−−→ M ′, with Γ ;∆ ` c : Chan〈T̃ ; Ũ〉, and |m̃| = |T̃ |, |ñ| = |Ũ |. Then

(Γ ;∆) after α is the environment Γ u m̃ : Publicu ñ : Any;∆, which refines the
information on the types of the names m̃ and ñ received.

Admissible transitions. A final technical subtlety is that the construction of
the type environment (Γ ;∆) after α may fail (and the resulting environment be
undefined). This may happen, for instance, after the input transition discussed
above, as the meet operation involved in the construction of (Γ ;∆) after α fails
if the names m̃ transmitted on c are already known to the environment at a
Secret type (Secret u Public is undefined). We rule out such transitions as non-
admissible, in the following sense.

Definition 2 (Admissible Transition). We say that a transition M
α−→ M ′

is admissible for Γ ;∆, written Γ ;∆ ` α, if, whenever α = c@q(p : m̃, ñ) with
Γ ;∆ ` c : Chan〈T̃ ; Ũ〉 and |m̃| = |T̃ |, |ñ| = |Ũ |, one has m̃∩ Secrets(Γ ;∆) = ∅
and p = −.

If M α−→ M ′ is admissible for (Γ ;∆), it is easy to show that (Γ ;∆) after α is
always defined, as the definition rules out the transitions that would pass secrets
for the non-secrets positions of an input prefix.

Theorem 3 (Subject Reduction). Assume Γ ;∆ ` M , and let M α−→ M ′ be
admissible for Γ ;∆. Then (Γ ;∆) after α `M ′.
3 The notation is loose here, as indeed the definition needs to consider the reduction

step M
α−→M ′ and not just the transition label α: hence, strictly speaking, we should

rather say (Γ ;∆) after α in M
α−→M ′.



It is important to remark that the restriction to admissible transitions does
not involve any loss of expressive power for the attacker. Notice to this regard
that well-typed principals only have admissible transitions and, by Proposition 5
below, we know that they never leak their secrets. Hence, restricting to admissible
transitions only amounts to assume that the attacker cannot impersonate any
trusted principal, and does not know the initial secrets shared by the principals.
This is a sound initial assumption for any network and, by Theorem 3, it is a
property that is preserved by well-typed networks (there is no circularity here,
as the proof of Proposition 5 does not rely on Theorem 3).

4.2 Secrecy

We first show that well-typed networks do not leak their secrets. Following [10],
we first define what it means to leak an unrestricted secret.

Definition 4 (Revelation). Let N≡N ′ | pJc@q〈p : m̃〉◦ |P K and take (Γ ;∆)
and s such that Γ ;∆ ` N and Γ ;∆ ` s : Secret(r̃). We say that N reveals s iff
s = c, or s ∈ m̃ and either q 6∈ r̃ or ◦ 6= •. We say that N reveals a secret of
(Γ ;∆) if N reveals s for some s ∈ Secrets(Γ ;∆).

The definition readily extends to the general case when a secret may be re-
stricted. Let Γ ;∆ ` N with N≡(νã : τ̃)N ′. N leaks a secret iff N ′ reveals a
secret of Γ, ã : τ̃T ;∆, ã : τ̃E . In other words, a network leaks a secret whenever
it either outputs it in clear, or sends it to a principal outside the secrecy group,
or uses it as a channel (the name of a channel is always leaked upon output).

Proposition 5 (Group Secrecy). Assume Γ ;∆ ` M . Then M does not leak
any secret.

The proof of this proposition follows directly by an inspection of the typing
rules. By Theorem 3, we then know that well-typed networks do not leak their
reveal at any step of computation. Indeed, as we show next, the type system
provides stronger secrecy guarantees, in that it prevents any (possibily implicit
or indirect flow of secret information. As in [1] we formalize strong secrecy in
terms of behavioral equivalence, which in turn we define based on the bisimilarity
relation that results from our LTS semantics. Given a transition M

α−→ M ′ we
let α̂ denote α with the type annotations stripped away. Again, we restrict to
admissible transitions, with respect to the secrecy assumptions provided by a
typing environment.

Definition 6 (Bisimilarity). A symmetric relation R between networks is a
(Γ ;∆)-bisimulation if whenever M R N and M

α−→ M ′ with Γ ;∆ ` α, there

exists N ′ such that N α′−→ N ′ with Γ ;∆ ` α′, α̂ = α̂′ and M ′ R N ′. (Γ ;∆)-
bisimilarity, noted ∼(Γ ;∆), is the largest (Γ ;∆)-bisimulation.

Theorem 7 (Strong Secrecy). Let Γ ;∆ ` N . Then N ∼(Γ ;∆) Nσ for all
injective substitutions σ of the names in Secrets(Γ ;∆).



Notice the technical difference from the original characterization in [1]: in that
case secrecy is characterized as the inability to tell networks apart based on the
names of type Any they exchange. Our present formulation is directly based on
secret names, instead.

4.3 Authenticity

As anticipated at the outset, we formalize authenticity by establishing a form
of injective agreement between statements and expectations in the style of [13].
We start by introducing a new construct to express the authenticity expectations
about an input variable. The syntax of processes is extended as follows, where
E ∈ {Fromp(ũ), F reshp(ũ)}.

P,Q,R ::= . . . as in §2 . . . | expect〈x : E〉.P

The expect〈·〉 prefix is not a binder, hence the variable x in expect〈x : E〉.P
must be bound by an enclosing input prefix. The prefix form expect〈x : E〉.P is
well-typed in a given type environment if the effect expected for x is consistent
with the effects associated with x in the given environment (and the continuation
P is well-typed). When x gets substituted by a name, as in expect〈m : E〉.P ,
the prefix is disregarded (as names are never bound to authenticity effects).

Table 7 Typing rules for expect〈·〉

Γ ;∆ ` x : E, Γ ;∆ `p P

Γ ;∆ `p expect〈x : E〉.P

Γ ;∆ `p P

Γ ;∆ `p expect〈m : E〉.P

At run-time, expectations play the role of assertions that express the authenticity
properties of a message exchange: specifically, the intention is to check that, in
any run of a process, each expectation, say expect〈m : E〉, can be associated with
a previous output of m that validates the authenticity property on the exchange
of m as expressed by the effect E. In particular, an expectation of an authentic
message from p may not only be justified by a certified output from p (as one
would certainly expect), but also by an anonymous output that includes in its
payload a shared secret between the receiver and p, since secrets are not leaked
in well-typed networks. Similarly, an expectation of a fresh, authentic message
additionally requires the presence of a nonce in case the justifying output is
anonymous, since we are interested in preventing replay attacks.

To formalize the justification mechanisms we just illustrated, we annotate
run-time network configurations so as to connect each expect〈·〉 statement with
the input prefix that binds the variable predicated by the statement. Since the
run-time input transitions of a network are triggered by corresponding (Re-
play/Forward) transitions, we create the desired association by annotating the



expect prefix with the index i of the (i) transition induced by the input that
binds the variable predicated by the prefix. Note that, in doing so, we actually
link by the index i each received value predicated by an expect with a previous
output containing that value, as desired.

We formalize all this by introducing an indexed version of the LTS from §2,
which we derive by modifying the (Input), (Replay) and (Forward) rules in Table
1 as in Table 8, and introducing a new rule for the expect prefix.

Table 8 Indexed LTS

(Input)

σ = {m̃/x̃}

pJc(q : x̃)◦.P K
c@p(q:m̃)◦i−−−−−−−→ pJidx(P, i, x̃)σK

(Expect)

pJexpect(i)〈m : E〉.P K
(i)p expects〈m:E〉−−−−−−−−−−−−→ pJP K

(Forward)

N ≡ (νã : τ̃)(N̂ |c@q〈p : m̃‖ñ〉◦i ), N̂
c@q(p:m̃)◦i−−−−−−−→ N ′

N
(i)−−→ (νã : τ̃)N ′

(Replay)

N ≡ (νã : τ̃)(N̂ |c@q〈− : m̃‖ñ〉◦i ), N̂
c@q(−:m̃)◦i−−−−−−−→ N ′

N
(i)−−→ (νã : τ̃)(N ′|c@q〈− : m̃‖ñ〉◦i )

The input label in the premise of the (Replay) and (Forward) rules now con-
veys the index i of the induced replay/forward transition, while the (Input) rule
states that, before applying the substitution σ, every expect〈·〉 in the contin-
uation, whose variable will become instantiated, must be indexed with i. The
goal is achieved via a function idx, defined by structural induction on processes
(cf. Appendix A). The indexed occurrences of expect〈·〉 type-check just as the
unindexed occurrences (cf. Table 7).

We formalize the intended correspondence between expectations and output
messages by means of the following, somewhat elaborate definition.

Definition 8 (Justified Expectation). Given a type environment (Γ ;∆),
consider the sequence of reductions N0

α0−→ N1
α1−→ · · · αm−1−−−−→ Nm. Let then

(Γk;∆k) be the environment (Γ ;∆) after α0, . . . , αk−1 for each k ∈ [1..m], where
αk is admissible for Γk;∆k, and let αj = (i)p expects〈m : E〉. We say that αj
is justified by αh (h < j) if αh = (i, b̃ : τ̃)c@p〈q : m̃〉◦i and either of the following
conditions holds:



– if E = Fromp(q̃), then either q ∈ q̃ or Nh+1 ≡ (νã : τ̃)(N ′ | c@p〈q : m̃‖ñ〉◦i )
and there exists s ∈ m̃ such that Γh, ã : τ̃ .T ;∆h, ã : τ̃ .E ` s : Secret(p, r̃)
with r̃ ⊆ q̃;

– if E = Freshp(q̃), the conditions of the previous item hold and, when q = −,
we additionally require that Γh, ã : τ̃ .T ;∆h, ã : τ̃ .E ` n : Nonce(p) for some
n ∈ m̃.

This notion of justification is clearly inspired by the correspondence assertions
proposed in [19], and akin to similar definitions employed in companion type
systems for authentication and authorization [14, 13]: an “expect” can in fact be
seen as an end and its corresponding output as a begin. However, note that the
previous definition allows us to characterize authenticity directly as a property
of the data exchanged during a protocol rather than indirectly by extracting and
interpreting the effects the protocol has on that data.

Theorem 9 (Authenticity). Let Γ ; ∅ ` N and N≡N0
α0−→ N1 · · ·

αm−1−−−−→ Nm
be a sequence of reductions with αk admissible for (Γk;∆k) (k ∈ [1..m]). Then
every expect label in the reduction sequence is justified by a previous output label
in the sequence.

5 Typing a Variant of 2KP

We show the type system at work on a simplified variant of the e-payment
protocol 2KP [5] by IBM. This is a significant example, because the protocol
relies on two different authentication schemes: a signature mechanism and the
presentation of a shared secret. The latter kind of authentication is important,
as in real settings it is unlikely that every principal possesses a signing key.

We can describe the protocol as follows. The customer cust sends the de-
scription desc of the order to the merchant merc along the channel init. The
merchant checks that the description received is the expected one and creates a
new transaction identifier tid. The merchant sends back the description, pack-
aged with tid, to the customer via channel invc, and then sends a request to the
acquirer bank along the channel req, providing tid and the price of the order.
At this stage, the customer allows the payment to the merchant by a commu-
nication along paym with the acquirer, where it provides tid, price and credit
card information can. Finally, the acquirer checks that the two requests (from
the customer and the merchant) agree and that the credit card details provided
by the customer are right. If so, the acquirer clears the transaction and sends
a notification to the customer and the merchant. The protocol can be coded as
the network 2KP = Ncust | Nmerc | Nbank, where each Ni is defined in Table 9.
We use composed conditional guards as syntactic sugar for a series of nested
conditionals. The 2KP network is well-typed under the following assumptions:

desc : Public, can : Secret(cust, bank), price : Secret(cust,merc, bank)

The type of the communication channels is immediately derived from the types of
the exchanged data, while cust, merc and bank must be given type Prin. Below,
we detail the most interesting aspects in the type derivation for the example.



Table 9 2KP Protocol Specification

Ncust , custJ init@merc〈− : desc〉 | invc(merc : xdesc, xtid).if (desc = xdesc)

then paym@bank〈− : xtid, price, can〉• | conf(bank : xauth).0 K

Nmerc , mercJ init(− : ydesc).if (ydesc = desc)

then (ν tid : Public)(invc@cust〈∗ : ydesc, tid〉 |
req@bank〈∗ : tid, price〉•) | resp(bank : yauth).0 K

Nbank , bankJ req(merc : ztid, zprice)
•.paym(− : z′tid, z

′
price, zcan)•.

if (can = zcan ∧ ztid = z′tid ∧ zprice = z′price)

then expect〈ztid : Freshbank(merc)〉.

expect〈z′tid : Frombank(cust)〉.

(resp@merc〈∗ : ztid〉 | conf@cust〈∗ : ztid〉) K

First, since merc is able to certify its messages, bank can easily derive that the
expedition of ztid is effectively from merc, since that variable is closed by a
signed input. Once again, notice that this communication mode guarantees the
freshness of the message. Secondly, even though zcan is closed by a non-certified
input, the receiver can use that variable with type Secret(cust, bank) and not
with type Any to type-check the continuation, since zcan is checked against can
and the typing rule for the conditional branch refines the types for the considered
values upon a successful match; Finally, although cust has not a mean to certify
its messages, the expedition of z′tid must come from cust, since z′tid : With(zcan)
and zcan : Secret(cust, bank) by the previous point. Note that, even if z′tid = ztid
and ztid is fresh, the type-checker cannot assert the freshness of z′tid. Even if this
may seem limitative in this particular case, given the nature of the tid, this is
the sound choice to make, since in general it is unsound to infer the freshness of
a piece of data from its equality with a fresh value.

We remark that the type-checking is completely syntax-directed and composi-
tional, yielding a rather effective tool for protocol verification. In spite of this
simplicity, the type system turns out to be quite expressive and flexible, using the
correlation rules to infer authenticity information and the conditional branches
to refine the types of the values.

6 Conclusions

The analysis of distributed systems built upon secure channel abstractions has
been subject of active research in the recent literature, based on various for-
malisms: model checking [3], CSP-style traces specifications [12], Strand spaces
[16], inductive verification [4] and process calculi [2, 11].



The present paper continues on the line of work initiated in [7, 6], by in-
troducing a type system to provide static security guarantees for the high-level
abstractions for distributed messaging proposed in those papers.

The type system enforces two main security guarantees – strong secrecy and
strong authenticity in the presence of a Dolev-Yao intruder – which are compa-
rable to those provided by companion type systems for security. The novelties
of our approach are mainly technical, but they also bear conceptual significance.
In particular, the ability to characterize authenticity as a property of data itself,
which is distinctive of our type system, appears to constitute an important step
towards the integration of security types within typing systems for (semi) struc-
tured datatypes available in modern programming languages. This kind of inte-
gration within languages accommodating more structured interaction primitives
such as those available in session description languages and/or choreography
languages represent one of the lines of work we plan for our future research.
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A Appendix

The function after. The function (Γ ;∆) after α in (M α−→ M ′) is partially
defined as follows:

– if α = c(− : m̃, ñ) with Γ ;∆ ` c : Chan〈T̃ ; Ũ〉, |m̃| = |T̃ | and |ñ| = |Ũ |, then
(Γ ;∆) after α in (M α−→M ′) = (Γ u m̃ : Public u ñ : Any;∆);

– if α = c(p : m̃, ñ) with Γ ;∆ ` c : Chan〈T̃ ; Ũ〉, |m̃| = |T̃ | and |ñ| = |Ũ |, then
(Γ ;∆) after α in (M α−→M ′) = (Γ u m̃ : T̃ u ñ : Ũ ;∆);

– if α = (i, b̃ : τ̃)c@p〈q : m̃〉◦i with bj : τj = Tj/Ẽj for each j, then
(Γ ;∆) after α in (M α−→M ′) = (Γ, b̃ : T̃ ;∆′)
with ∆′ = ∆ ∪ {bj : Nonce(q) | Ẽj = Nonce(q)};

– if α = (i), then
(Γ ;∆) after α in (M α−→M ′) = (Γ u m̃ : Publicu ñ : Any;∆) if i ∈ fn(M ′),
(Γ ;∆) after α in (M α−→M ′) = (Γ u m̃ : T̃ u ñ : Ũ ;∆) otherwise.

The definition exploits the fact that a message cached at i is consumed by a
transition (i) if and only if it is signed by a principal.

The function idx. The function idx(P, i, ỹ) is defined by induction on the
structure of the process P as follows:

– idx(expect〈x : E〉.P, i, ỹ) = expect(i)〈x : E〉.idx(P, i, ỹ), if x ∈ ỹ;
– idx(expect〈x : E〉.P, i, ỹ) = expect〈x : E〉.idx(P, i, ỹ), if x /∈ ỹ;
– idx(u@v〈∗ : ũ〉◦, i, ỹ) = u@v〈∗ : ũ〉◦;
– idx(a(u : x̃)◦.P, i, ỹ) = a(u : x̃)◦.idx(P, i, ỹ);
– idx(0, i, ỹ) = 0;
– idx(P |Q, i, ỹ) = idx(P, i, ỹ)|idx(Q, i, ỹ);
– idx(test(u = v) then P else Q, i, ỹ) = test(u = v) then idx(P, i, ỹ) else idx(Q, i, ỹ);
– idx(rec X.P, i, ỹ) = rec X.idx(P, i, ỹ);
– idx(X, i, ỹ) = X;
– idx((νa : τ)P, i, ỹ) = (νa : τ)idx(P, i, ỹ).


