Abstract
The security goals of an organization are realized through security policies, which concern physical security, digital security and security awareness. An insider is aware of these security policies, and might be able to thwart the security goals by combining physical, digital and social means. A systematic analysis of such attacks requires the whole environment where the insider operates to be formally represented. This paper presents Portunes, a framework which integrates all three security domains in a single environment. Portunes consists of a high-level abstraction model focusing on the relations between the three security domains and a lower abstraction level language able to represent the model and describe attacks which span the three security domains.
Using the Portunes framework, we are able to represent a whole new family of attacks where the insider is not assumed to use purely digital actions to achieve a malicious goal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
INFOSEC Research Council. Hard problem list (November 2005), http://www.cyber.st.dhs.gov/docs/IRC_Hard_Problem_List.pdf
Randazzo, M.R., Keeney, M., Kowalski, E., Cappelli, D., Moore, A.: Insider threat study: Illicit cyber activity in the banking and finance sector. U.S. Secret Service and CERT Coordination Center Software Engineering Institute (2004)
DePoy, J., Phelan, J., Sholander, P., Smith, B.J., Varnado, G.B., Wyss, G.D., Darby, J., Walter, A.: Critical infrastructure systems of systems assessment methodology. Technical Report SAND2006-6399, Sandia National Laboratories (October 2007)
Stasiukonis, S.: Social engineering the usb way (2006), http://www.darkreading.com/document.asp?doc_id=95556
Dragovic, B., Crowcroft, J.: Containment: from context awareness to contextual effects awareness. In: Proceedings of 2nd Inernational Workshop on Software Aspects of Context. CEUR Workshop Proceedings (2005)
Scott, D.J.: Abstracting Application-Level Security Policy for Ubiquitous Computing. PhD thesis, University of Cambridge, Cambridge (2004)
De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: A kernel language for agents interaction and mobility. IEEE Transactions on software engineering 24(5), 315–330 (1998)
Gorla, D., Pugliese, R.: Resource access and mobility control with dynamic privileges acquisition. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 119–132. Springer, Heidelberg (2003)
Bettini, L., Loreti, M., Pugliese, R.: An infrastructure language for open nets. In: SAC 2002: Proceedings of the 2002 ACM Symposium on Applied Computing, pp. 373–377. ACM, New York (2002)
Probst, C.W., Hansen, R.R., Nielson, F.: Where can an insider attack? In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 127–142. Springer, Heidelberg (2007)
Dimkov, T., Tang, Q., Hartel, P.H.: On the inability of existing security models to cope with data mobility in dynamic organizations. In: Proceedings of the Workshop on Modeling Security. CEUR Workshop Proceedings (2008)
AlZarouni, M.: The reality of risks from consented use of usb devices. In: Valli, C., Woodward, A. (eds.) Proceedings of the 4th Australian Information Security Conference, pp. 5–15 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dimkov, T., Pieters, W., Hartel, P. (2010). Portunes: Representing Attack Scenarios Spanning through the Physical, Digital and Social Domain. In: Armando, A., Lowe, G. (eds) Automated Reasoning for Security Protocol Analysis and Issues in the Theory of Security. ARSPA-WITS 2010. Lecture Notes in Computer Science, vol 6186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16074-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-16074-5_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16073-8
Online ISBN: 978-3-642-16074-5
eBook Packages: Computer ScienceComputer Science (R0)