Abstract
In this paper, a decentralized group formation algorithm for task allocation in complex adaptive systems is proposed. Compared with current related works, this decentralized algorithm takes system architectures into account and allows not only neighboring agents but also indirect linked agents in the system to help with a task. A system adaptation strategy is also developed for discovering effective system structures for task allocation. Moreover, a set of experiments was conducted to demonstrate the efficiency of our methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdallah, S., Lesser, V.: Modeling task allocation using a decision theoretic model. In: Proceedings of AAMAS 2005, Utrecht, Netherlands, pp. 719–726 (2005)
Abdallah, S., Lesser, V.: Learning the task allocation game. In: Proceedings of AAMAS 2006, Hakodate, Hokkaido, Japan, pp. 850–857 (2006)
Bachrach, Y., Rosenschein, J.S.: Distributed multiagent resource allocation in diminishing marginal return domains. In: Proceedings of AAMAS, Estoril, Portugal, pp. 1103–1110 (2008)
Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Gaston, M.E., desJardins, M.: Agent-organized networks for dynamic team formation. In: Proceedings of AAMAS 2005, Utrecht, Netherlands, pp. 230–237 (2005)
Kraus, S., Shehory, O., Taase, G.: Coalition formation with uncertain heterogeneous information. In: Proceedings of AAMAS 2003, Melbourne, Australia, pp. 1–8 (2003)
Kraus, S., Shehory, O., Taase, G.: The advantages of compromising in coalition formation with incomplete information. In: Proceedings of AAMAS 2004, New York, USA, pp. 588–595 (2004)
Lerman, K., Shehory, O.: Coalition formation for large-scale electronic markets. In: Proceedings of ICMAS 2000, Boston, Massachusetts, USA, pp. 167–174 (2000)
Manisterski, E., David, E., Kraus, S., Jennings, N.R.: Forming efficient agent groups for completing complex tasks. In: Proceedings of AAMAS 2006, Hakodate, Hokkaido, Japan, pp. 834–841 (2006)
Schlegel, T., Kowalczyk, R.: Towards self-organising agent-based resource allocation in a multi-server environment. In: Proceedings of AAMAS 2007, Honolulu, Hawai’i, USA, pp. 74–81 (2007)
Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artificial Intelligence 101(1-2), 165–200 (1998)
Sims, M., Goldman, C.V., Lesser, V.: Self-organization through bottom-up coalition formation. In: Proceedings of AAMAS 2003, Melbourne, Australia, pp. 867–874 (2003)
Smith, R.G.: The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Trans. Computers C-29(12), 1104–1113 (1980)
Theocharopoulou, C., Partsakoulakis, I., Vouros, G.A., Stergiou, K.: Overlay network for task allocation and coordination in dynamic large-scale networks of cooperative agents. In: Proceedings of AAMAS 2007, pp. 295–302 (2007)
Weerdt, M.D., Zhang, Y., Klos, T.: Distributed task allocation in social networks. In: Proceedings of AAMAS 2007, Honolulu, Hawaii, USA, pp. 500–507 (2007)
Zheng, X., Koenig, S.: Reaction functions for task allocation to cooperative agents. In: Proceedings of AAMAS 2008, Estoril, Portugal, pp. 559–566 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ye, D., Zhang, M., Sutanto, D. (2010). DGF: Decentralized Group Formation for Task Allocation in Complex Adaptive Systems. In: Bai, Q., Fukuta, N. (eds) Advances in Practical Multi-Agent Systems. Studies in Computational Intelligence, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16098-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-16098-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16097-4
Online ISBN: 978-3-642-16098-1
eBook Packages: EngineeringEngineering (R0)