Abstract
In this paper we have highlighted five existing approaches for introducing personalization in OLAP: preference constructors, dynamic personalization, visual OLAP, recommendations with user session analysis and recommendations with user profile analysis and have analyzed research papers within these directions. We have pointed out applicability of personalization to OLAP schema elements in these approaches. The comparative analysis has been made in order to highlight a certain personalization approach. A new method has been proposed, which provides exhaustive description of interaction between user and data warehouse, using the concept of Zachman Framework [1, 2], according to which a set of user-describing profiles (user, preference, temporal, spatial, preferential and recommendational) have been developed. Methods of profile data gathering and processing are described in this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zachman, J.A.: The Zachman Framework: A Primer for Enterprise Engineering and Manufacturing. In: Zachman International (2003)
The Zachman FrameworkTM for Enterprise Architecture, http://www.zachmaninternational.com/index.php/the-zachman-framework
Koutrika, G., Ioannidis, Y.E.: Personalization of Queries in Database Systems. In: Proceedings of 20th International Conference on Data Engineering (ICDE’04), Boston, MA, USA, March 30-April 2, pp. 597–608 (2004)
Garrigós, I., Pardillo, J., Mazón, J.-N., Trujillo, J.: A Conceptual Modeling Approach for OLAP Personalization. In: Laender, A.H.F. (ed.) ER 2009. LNCS, vol. 5829, pp. 401–414. Springer, Heidelberg (2009)
Golfarelli, M., Rizzi, S.: Expressing OLAP Preferences. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 83–91. Springer, Heidelberg (2009)
Giacometti, A., Marcel, P., Negre, E., Soulet, A.: Query Recommendations for OLAP Discovery Driven Analysis. In: Proceedings of 12th ACM International Workshop on Data Warehousing and OLAP (DOLAP’09), Hong Kong, November 6, pp. 81–88 (2009)
Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Preference-Based Recommendations for OLAP Analysis. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) Data Warehousing and Knowledge Discovery. LNCS, vol. 5691, pp. 467–478. Springer, Heidelberg (2009)
Mansmann, S., Scholl, M.H.: Exploring OLAP Aggregates with Hierarchical Visualization Techniques. In: Proceedings of 22nd Annual ACM Symposium on Applied Computing (SAC’07), Multimedia & Visualization Track, Seoul, Korea, March 2007, pp. 1067–1073 (2007)
Mansmann, S., Scholl, M.H.: Visual OLAP: A New Paradigm for Exploring Multidimensonal Aggregates. In: Proceedings of IADIS International Conference on Computer Graphics and Visualization (MCCSIS’08), Amsterdam, The Netherlands, July 24-26, pp. 59–66 (2008)
Solodovnikova, D.: Data Warehouse Evolution Framework. In: Proceedings of the Spring Young Researcher’s Colloquium on Database and Information Systems SYRCoDIS, Moscow, Russia (2007), http://ceur-ws.org/Vol-256/submission_4.pdf
Thalhammer, T., Schrefl, M., Mohania, M.: Active Data Warehouses: Complementing OLAP with Active Rules. In: Data & Knowledge Engineering, December 2001, vol. 39(3), pp. 241–269. Elsevier Science Publishers B. V., Amsterdam (2001)
Garrigós, I., Gómez, J.: Modeling User Behaviour Aware WebSites with PRML. In: Proceedings of the CAISE’06 Third International Workshop on Web Information Systems Modeling (WISM ’06), Luxemburg, June 5-9, pp. 1087–1101 (2006)
Ravat, F., Teste, O.: Personalization and OLAP Databases. In: Annals of Information Systems. New Trends in Data Warehousing and Data Analysis, vol. 3. Springer, US (2009)
Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H.: Personalization of MDX Queries. In: Proceedings of XXIIemes Journees Bases de Donnees Avancees (BDA’06), Lille, France (2006)
Kozmina, N., Niedrite, L.: Research Directions of OLAP Personalizaton. In: Proceedings of 19th International Conference on Information Systems Development (ISD’10), Prague, Czech Republic (August 2010)
Jones, M.E., Song, I.-Y.: Dimensional Modeling: Identifying, Classifying & Applying Patterns. In: Proc. of ACM 8th International Workshop on Data Warehousing and OLAP (DOLAP’05), Bremen, Germany, pp. 29–37 (2005)
Suh, Y., Woo, W.: Context-based User Profile Management for Personalized Services. In: Ubicomp Workshop (ubiPCMM), pp. 64–73 (2005)
Kimball, R., Ross, M.: The Data Warehouse Toolkit, The Complete Guide to Dimensional Modeling, 2nd edn., p. 421. John Wiley & Sons, Inc., New York (2002)
Silverston, L.: The Data Model Resource Book, Revised edn., vol. 1, p. 542. John Wiley & Sons, USA (2001)
Jensen, C.S., Kligys, A., Pedersen, T.B., Timko, I.: Multidimensional Data Modeling for Location-based Services. The VLDB Journal — The International Journal on Very Large Data Bases 13(1), 1–21 (2004)
Poole, J., Chang, D., Tolbert, D., Mellor, D.: Common Warehouse Metamodel Developers Guide, p. 704. Wiley Publishing, Chichester (2003)
Microsoft Technet Library, http://technet.microsoft.com/en-us/library/cc917644.aspx
Imhoff, C., Galemmo, N., Geiger, J.G.: Mastering Data Warehouse Design: Relational and Dimensional Techniques, p. 456. Wiley Publishing, USA (2003)
IP Address Geolocation to Identify Website Visitor’s Geographical Location, http://www.ip2location.com/
My Browser Info, http://mybrowserinfo.com/
Find IP Address: IP Lookup, http://www.find-ip-address.org/
Solodovņikova, D.: Building Queries on Multiple Versions of Data Warehouse. In: Proceedings of the 8th International Baltic Conference on Databases and Information Systems, Tallinn, Estonia, pp. 75–86 (2008)
Drachsler, H., Hummel, H.G.K., Koper, R.: Personal Recommender Systems for Learners in Lifelong Learning Networks: the Requirements, Techniques and Model. International Journal of Learning Technology 3(4), 404–423 (2008)
Ji, J.Z., Liu, C.N., Sha, Z.Q., Zhong, N.: Personalized Recommendation Based on a Multilevel Customer Model. International Journal of Pattern Recognition and Artificial Intelligence, World Scientific 19(7), 895–916 (2005)
Pazzani, M.J.: A Framework for Collaborative, Content-Based and Demographic Filtering. Artificial Intelligence Review 13(5-6), 393–408 (1999)
Rich, E.: User Modeling via Stereotypes. International Journal of Cognitive Science 3, 329–354 (1979)
Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kozmina, N., Niedrite, L. (2010). OLAP Personalization with User-Describing Profiles. In: Forbrig, P., Günther, H. (eds) Perspectives in Business Informatics Research. BIR 2010. Lecture Notes in Business Information Processing, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16101-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-16101-8_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16100-1
Online ISBN: 978-3-642-16101-8
eBook Packages: Computer ScienceComputer Science (R0)