Skip to main content

Inferring Social Networks from Outbreaks

  • Conference paper
Algorithmic Learning Theory (ALT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6331))

Included in the following conference series:

Abstract

We consider the problem of inferring the most likely social network given connectivity constraints imposed by observations of outbreaks within the network. Given a set of vertices (or agents) V and constraints (or observations) S i  ⊆ V we seek to find a minimum log-likelihood cost (or maximum likelihood) set of edges (or connections) E such that each S i induces a connected subgraph of (V,E). For the offline version of the problem, we prove an Ω(log(n)) hardness of approximation result for uniform cost networks and give an algorithm that almost matches this bound, even for arbitrary costs. Then we consider the online problem, where the constraints are satisfied as they arrive. We give an O(nlog(n))-competitive algorithm for the arbitrary cost online problem, which has an Ω(n)-competitive lower bound. We look at the uniform cost case as well and give an O(n 2/3log2/3(n))-competitive algorithm against an oblivious adversary, as well as an \(\Omega(\sqrt{n})\)-competitive lower bound against an adaptive adversary. We examine cases when the underlying network graph is known to be a star or a path, and prove matching upper and lower bounds of Θ(log(n)) on the competitive ratio for them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T., Tamura, T., Horimoto, K.: Completing networks using observed data. In: ALT, pp. 126–140 (2009)

    Google Scholar 

  2. Alon, N., Asodi, V.: Learning a hidden subgraph. SIAM J. Discrete Math. 18(4), 697–712 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. In: Proceedings of the 35th annual ACM symposium on Theory of computing, pp. 100–105 (2003)

    Google Scholar 

  4. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. In: STOC, pp. 100–105 (2003)

    Google Scholar 

  5. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: A general approach to online network optimization problems. ACM Transactions on Algorithms 2(4), 640–660 (2006)

    Article  MathSciNet  Google Scholar 

  6. Alon, N., Beigel, R., Kasif, S., Rudich, S., Sudakov, B.: Learning a hidden matching. SIAM J. Comput. 33(2), 487–501 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Angluin, D., Aspnes, J., Reyzin, L.: Optimally learning social networks with activations and suppressions. In: 19th International Conference on Algorithmic Learning Theory, pp. 272–286 (2008)

    Google Scholar 

  8. Angluin, D., Chen, J.: Learning a hidden graph using O(logn) queries per edge. J. Comput. Syst. Sci. 74(4), 546–556 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Beigel, R., Alon, N., Kasif, S., Apaydin, M.S., Fortnow, L.: An optimal procedure for gap closing in whole genome shotgun sequencing. In: RECOMB, pp. 22–30 (2001)

    Google Scholar 

  10. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Buchbinder, N.: Designing Competitive Online Algorithms Via A Primal-Dual Approach. PhD thesis, Technion – Israel Institute of Technology, Haifa, Israel (2008)

    Google Scholar 

  12. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MATH  Google Scholar 

  13. Feige, U.: A threshold of ln for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grebinski, V., Kucherov, G.: Reconstructing a Hamiltonian cycle by querying the graph: Application to DNA physical mapping. Discrete Applied Mathematics 88(1-3), 147–165 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gupta, A., Krishnaswamy, R., Ravi, R.: Online and stochastic survivable network design. In: STOC, pp. 685–694 (2009)

    Google Scholar 

  16. Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree. Mathematical Programming 98(1-3), 345–414 (2003)

    Article  MathSciNet  Google Scholar 

  17. Korach, E., Stern, M.: The complete optimal stars-clustering-tree problem. Discrete Applied Mathematics 156(4), 444–450 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Reyzin, L., Srivastava, N.: Learning and verifying graphs using queries with a focus on edge counting. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 285–297. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angluin, D., Aspnes, J., Reyzin, L. (2010). Inferring Social Networks from Outbreaks. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2010. Lecture Notes in Computer Science(), vol 6331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16108-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16108-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16107-0

  • Online ISBN: 978-3-642-16108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics