Abstract
The ability to distinguish, differentiate and contrast between different data sets is a key objective in data mining. Such ability can assist domain experts to understand their data and can help in building classification models. This presentation will introduce the techniques for contrasting data sets. It will also focus on some important real world applications that illustrate how contrast patterns can be applied effectively for building robust classifiers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ramamohanarao, K. (2010). Contrast Pattern Mining and Its Application for Building Robust Classifiers. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2010. Lecture Notes in Computer Science(), vol 6331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16108-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-16108-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16107-0
Online ISBN: 978-3-642-16108-7
eBook Packages: Computer ScienceComputer Science (R0)